FLUX-VisionReply / modules /common_ckpt.py
gokaygokay's picture
full_files
2f4febc
raw
history blame
14.6 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from einops import rearrange
from modules.speed_util import checkpoint
class Linear(torch.nn.Linear):
def reset_parameters(self):
return None
class Conv2d(torch.nn.Conv2d):
def reset_parameters(self):
return None
class AttnBlock_lrfuse_backup(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, use_checkpoint=True):
super().__init__()
self.self_attn = self_attn
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.attention = Attention2D(c, nhead, dropout)
self.kv_mapper = nn.Sequential(
nn.SiLU(),
Linear(c_cond, c)
)
self.fuse_mapper = nn.Sequential(
nn.SiLU(),
Linear(c_cond, c)
)
self.use_checkpoint = use_checkpoint
def forward(self, hr, lr):
return checkpoint(self._forward, (hr, lr), self.paramters(), self.use_checkpoint)
def _forward(self, hr, lr):
res = hr
hr = self.kv_mapper(rearrange(hr, 'b c h w -> b (h w ) c'))
lr_fuse = self.attention(self.norm(lr), hr, self_attn=False) + lr
lr_fuse = self.fuse_mapper(rearrange(lr_fuse, 'b c h w -> b (h w ) c'))
hr = self.attention(self.norm(res), lr_fuse, self_attn=False) + res
return hr
class AttnBlock_lrfuse(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, kernel_size=3, use_checkpoint=True):
super().__init__()
self.self_attn = self_attn
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.attention = Attention2D(c, nhead, dropout)
self.kv_mapper = nn.Sequential(
nn.SiLU(),
Linear(c_cond, c)
)
self.depthwise = Conv2d(c, c , kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
self.channelwise = nn.Sequential(
Linear(c + c, c ),
nn.GELU(),
GlobalResponseNorm(c ),
nn.Dropout(dropout),
Linear(c , c)
)
self.use_checkpoint = use_checkpoint
def forward(self, hr, lr):
return checkpoint(self._forward, (hr, lr), self.parameters(), self.use_checkpoint)
def _forward(self, hr, lr):
res = hr
hr = self.kv_mapper(rearrange(hr, 'b c h w -> b (h w ) c'))
lr_fuse = self.attention(self.norm(lr), hr, self_attn=False) + lr
lr_fuse = torch.nn.functional.interpolate(lr_fuse.float(), res.shape[2:])
#print('in line 65', lr_fuse.shape, res.shape)
media = torch.cat((self.depthwise(lr_fuse), res), dim=1)
out = self.channelwise(media.permute(0,2,3,1)).permute(0,3,1,2) + res
return out
class Attention2D(nn.Module):
def __init__(self, c, nhead, dropout=0.0):
super().__init__()
self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True)
def forward(self, x, kv, self_attn=False):
orig_shape = x.shape
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
if self_attn:
#print('in line 23 algong self att ', kv.shape, x.shape)
kv = torch.cat([x, kv], dim=1)
#if x.shape[1] > 48 * 48 and not self.training:
# x = x * math.sqrt(math.log(x.shape[1] , 24*24))
x = self.attn(x, kv, kv, need_weights=False)[0]
x = x.permute(0, 2, 1).view(*orig_shape)
return x
class Attention2D_splitpatch(nn.Module):
def __init__(self, c, nhead, dropout=0.0):
super().__init__()
self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True)
def forward(self, x, kv, self_attn=False):
orig_shape = x.shape
#x = rearrange(x, 'b c h w -> b c (nh wh) (nw ww)', wh=24, ww=24, nh=orig_shape[-2] // 24, nh=orig_shape[-1] // 24,)
x = rearrange(x, 'b c (nh wh) (nw ww) -> (b nh nw) (wh ww) c', wh=24, ww=24, nh=orig_shape[-2] // 24, nw=orig_shape[-1] // 24,)
#print('in line 168', x.shape)
#x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
if self_attn:
#print('in line 23 algong self att ', kv.shape, x.shape)
num = (orig_shape[-2] // 24) * (orig_shape[-1] // 24)
kv = torch.cat([x, kv.repeat(num, 1, 1)], dim=1)
#if x.shape[1] > 48 * 48 and not self.training:
# x = x * math.sqrt(math.log(x.shape[1] / math.sqrt(16), 24*24))
x = self.attn(x, kv, kv, need_weights=False)[0]
x = rearrange(x, ' (b nh nw) (wh ww) c -> b c (nh wh) (nw ww)', b=orig_shape[0], wh=24, ww=24, nh=orig_shape[-2] // 24, nw=orig_shape[-1] // 24)
#x = x.permute(0, 2, 1).view(*orig_shape)
return x
class Attention2D_extra(nn.Module):
def __init__(self, c, nhead, dropout=0.0):
super().__init__()
self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True)
def forward(self, x, kv, extra_emb=None, self_attn=False):
orig_shape = x.shape
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
num_x = x.shape[1]
if extra_emb is not None:
ori_extra_shape = extra_emb.shape
extra_emb = extra_emb.view(extra_emb.size(0), extra_emb.size(1), -1).permute(0, 2, 1)
x = torch.cat((x, extra_emb), dim=1)
if self_attn:
#print('in line 23 algong self att ', kv.shape, x.shape)
kv = torch.cat([x, kv], dim=1)
x = self.attn(x, kv, kv, need_weights=False)[0]
img = x[:, :num_x, :].permute(0, 2, 1).view(*orig_shape)
if extra_emb is not None:
fix = x[:, num_x:, :].permute(0, 2, 1).view(*ori_extra_shape)
return img, fix
else:
return img
class AttnBlock_extraq(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
super().__init__()
self.self_attn = self_attn
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
#self.norm2 = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.attention = Attention2D_extra(c, nhead, dropout)
self.kv_mapper = nn.Sequential(
nn.SiLU(),
Linear(c_cond, c)
)
# norm2 initialization in generator in init extra parameter
def forward(self, x, kv, extra_emb=None):
#print('in line 84', x.shape, kv.shape, self.self_attn, extra_emb if extra_emb is None else extra_emb.shape)
#in line 84 torch.Size([1, 1536, 32, 32]) torch.Size([1, 85, 1536]) True None
#if extra_emb is not None:
kv = self.kv_mapper(kv)
if extra_emb is not None:
res_x, res_extra = self.attention(self.norm(x), kv, extra_emb=self.norm2(extra_emb), self_attn=self.self_attn)
x = x + res_x
extra_emb = extra_emb + res_extra
return x, extra_emb
else:
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
return x
class AttnBlock_latent2ex(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
super().__init__()
self.self_attn = self_attn
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.attention = Attention2D(c, nhead, dropout)
self.kv_mapper = nn.Sequential(
nn.SiLU(),
Linear(c_cond, c)
)
def forward(self, x, kv):
#print('in line 84', x.shape, kv.shape, self.self_attn)
kv = F.interpolate(kv.float(), x.shape[2:])
kv = kv.view(kv.size(0), kv.size(1), -1).permute(0, 2, 1)
kv = self.kv_mapper(kv)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
return x
class LayerNorm2d(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
class AttnBlock_crossbranch(nn.Module):
def __init__(self, attnmodule, c, c_cond, nhead, self_attn=True, dropout=0.0):
super().__init__()
self.attn = AttnBlock(c, c_cond, nhead, self_attn, dropout)
#print('in line 108', attnmodule.device)
self.attn.load_state_dict(attnmodule.state_dict())
self.norm1 = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.channelwise1 = nn.Sequential(
Linear(c *2, c ),
nn.GELU(),
GlobalResponseNorm(c ),
nn.Dropout(dropout),
Linear(c, c)
)
self.channelwise2 = nn.Sequential(
Linear(c *2, c ),
nn.GELU(),
GlobalResponseNorm(c ),
nn.Dropout(dropout),
Linear(c, c)
)
self.c = c
def forward(self, x, kv, main_x):
#print('in line 84', x.shape, kv.shape, main_x.shape, self.c)
x = self.channelwise1(torch.cat((x, F.interpolate(main_x.float(), x.shape[2:])), dim=1).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + x
x = self.attn(x, kv)
main_x = self.channelwise2(torch.cat((main_x, F.interpolate(x.float(), main_x.shape[2:])), dim=1).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + main_x
return main_x, x
class GlobalResponseNorm(nn.Module):
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
class ResBlock(nn.Module):
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, use_checkpoint =True): # , num_heads=4, expansion=2):
super().__init__()
self.depthwise = Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
# self.depthwise = SAMBlock(c, num_heads, expansion)
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
Linear(c + c_skip, c * 4),
nn.GELU(),
GlobalResponseNorm(c * 4),
nn.Dropout(dropout),
Linear(c * 4, c)
)
self.use_checkpoint = use_checkpoint
def forward(self, x, x_skip=None):
if x_skip is not None:
return checkpoint(self._forward_skip, (x, x_skip), self.parameters(), self.use_checkpoint)
else:
#print('in line 298', x.shape)
return checkpoint(self._forward_woskip, (x, ), self.parameters(), self.use_checkpoint)
def _forward_skip(self, x, x_skip):
x_res = x
x = self.norm(self.depthwise(x))
if x_skip is not None:
x = torch.cat([x, x_skip], dim=1)
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x + x_res
def _forward_woskip(self, x):
x_res = x
x = self.norm(self.depthwise(x))
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x + x_res
class AttnBlock(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, use_checkpoint=True):
super().__init__()
self.self_attn = self_attn
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.attention = Attention2D(c, nhead, dropout)
self.kv_mapper = nn.Sequential(
nn.SiLU(),
Linear(c_cond, c)
)
self.use_checkpoint = use_checkpoint
def forward(self, x, kv):
return checkpoint(self._forward, (x, kv), self.parameters(), self.use_checkpoint)
def _forward(self, x, kv):
kv = self.kv_mapper(kv)
res = self.attention(self.norm(x), kv, self_attn=self.self_attn)
#print(torch.unique(res), torch.unique(x), self.self_attn)
#scale = math.sqrt(math.log(x.shape[-2] * x.shape[-1], 24*24))
x = x + res
return x
class AttnBlock_mytest(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
super().__init__()
self.self_attn = self_attn
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.attention = Attention2D(c, nhead, dropout)
self.kv_mapper = nn.Sequential(
nn.SiLU(),
nn.Linear(c_cond, c)
)
def forward(self, x, kv):
kv = self.kv_mapper(kv)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
return x
class FeedForwardBlock(nn.Module):
def __init__(self, c, dropout=0.0):
super().__init__()
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
Linear(c, c * 4),
nn.GELU(),
GlobalResponseNorm(c * 4),
nn.Dropout(dropout),
Linear(c * 4, c)
)
def forward(self, x):
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x
class TimestepBlock(nn.Module):
def __init__(self, c, c_timestep, conds=['sca'], use_checkpoint=True):
super().__init__()
self.mapper = Linear(c_timestep, c * 2)
self.conds = conds
for cname in conds:
setattr(self, f"mapper_{cname}", Linear(c_timestep, c * 2))
self.use_checkpoint = use_checkpoint
def forward(self, x, t):
return checkpoint(self._forward, (x, t), self.parameters(), self.use_checkpoint)
def _forward(self, x, t):
#print('in line 284', x.shape, t.shape, self.conds)
#in line 284 torch.Size([4, 2048, 19, 29]) torch.Size([4, 192]) ['sca', 'crp']
t = t.chunk(len(self.conds) + 1, dim=1)
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
for i, c in enumerate(self.conds):
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
a, b = a + ac, b + bc
return x * (1 + a) + b