Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import logging | |
from datetime import datetime | |
from pathlib import Path | |
import gradio as gr | |
import torch | |
import torchaudio | |
import os | |
import requests | |
from transformers import pipeline | |
import tempfile | |
import numpy as np | |
from einops import rearrange | |
import cv2 | |
from scipy.io import wavfile | |
import librosa | |
import json | |
from typing import Optional, Tuple, List | |
import atexit | |
try: | |
import mmaudio | |
except ImportError: | |
os.system("pip install -e .") | |
import mmaudio | |
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video, | |
setup_eval_logging) | |
from mmaudio.model.flow_matching import FlowMatching | |
from mmaudio.model.networks import MMAudio, get_my_mmaudio | |
from mmaudio.model.sequence_config import SequenceConfig | |
from mmaudio.model.utils.features_utils import FeaturesUtils | |
# ๋ก๊น ์ค์ | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
) | |
log = logging.getLogger() | |
# CUDA ์ค์ | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
torch.backends.cudnn.benchmark = True | |
else: | |
device = torch.device("cpu") | |
dtype = torch.bfloat16 | |
# ๋ชจ๋ธ ์ค์ | |
model: ModelConfig = all_model_cfg['large_44k_v2'] | |
model.download_if_needed() | |
output_dir = Path('./output/gradio') | |
setup_eval_logging() | |
# ๋ฒ์ญ๊ธฐ ๋ฐ Pixabay API ์ค์ | |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device="cpu") | |
PIXABAY_API_KEY = "33492762-a28a596ec4f286f84cd328b17" | |
def cleanup_temp_files(): | |
temp_dir = tempfile.gettempdir() | |
for file in os.listdir(temp_dir): | |
if file.endswith(('.mp4', '.flac')): | |
try: | |
os.remove(os.path.join(temp_dir, file)) | |
except: | |
pass | |
atexit.register(cleanup_temp_files) | |
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]: | |
with torch.cuda.device(device): | |
seq_cfg = model.seq_cfg | |
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval() | |
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) | |
log.info(f'Loaded weights from {model.model_path}') | |
feature_utils = FeaturesUtils( | |
tod_vae_ckpt=model.vae_path, | |
synchformer_ckpt=model.synchformer_ckpt, | |
enable_conditions=True, | |
mode=model.mode, | |
bigvgan_vocoder_ckpt=model.bigvgan_16k_path, | |
need_vae_encoder=False | |
).to(device, dtype).eval() | |
return net, feature_utils, seq_cfg | |
net, feature_utils, seq_cfg = get_model() | |
# search_videos ํจ์ ์์ | |
def search_videos(query): | |
try: | |
# CPU์์ ๋ฒ์ญ ์คํ | |
query = translate_prompt(query) | |
return search_pixabay_videos(query, PIXABAY_API_KEY) | |
except Exception as e: | |
logging.error(f"Video search error: {e}") | |
return [] | |
# translate_prompt ํจ์๋ ์์ | |
def translate_prompt(text): | |
try: | |
if text and any(ord(char) >= 0x3131 and ord(char) <= 0xD7A3 for char in text): | |
# CPU์์ ๋ฒ์ญ ์คํ | |
with torch.no_grad(): | |
translation = translator(text)[0]['translation_text'] | |
return translation | |
return text | |
except Exception as e: | |
logging.error(f"Translation error: {e}") | |
return text | |
# ๋๋ฐ์ด์ค ์ค์ ๋ถ๋ถ ์์ | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
torch.backends.cudnn.benchmark = True | |
else: | |
device = torch.device("cpu") | |
# ๋ฒ์ญ๊ธฐ ์ค์ ์์ | |
translator = pipeline("translation", | |
model="Helsinki-NLP/opus-mt-ko-en", | |
device="cpu") # ๋ช ์์ ์ผ๋ก CPU ์ง์ | |
def search_pixabay_videos(query, api_key): | |
try: | |
base_url = "https://pixabay.com/api/videos/" | |
params = { | |
"key": api_key, | |
"q": query, | |
"per_page": 40 | |
} | |
response = requests.get(base_url, params=params) | |
if response.status_code == 200: | |
data = response.json() | |
return [video['videos']['large']['url'] for video in data.get('hits', [])] | |
return [] | |
except Exception as e: | |
logging.error(f"Pixabay API error: {e}") | |
return [] | |
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int, | |
cfg_strength: float, duration: float): | |
prompt = translate_prompt(prompt) | |
negative_prompt = translate_prompt(negative_prompt) | |
rng = torch.Generator(device=device) | |
rng.manual_seed(seed) | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
clip_frames, sync_frames, duration = load_video(video, duration) | |
clip_frames = clip_frames.unsqueeze(0) | |
sync_frames = sync_frames.unsqueeze(0) | |
seq_cfg.duration = duration | |
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) | |
audios = generate(clip_frames, | |
sync_frames, [prompt], | |
negative_text=[negative_prompt], | |
feature_utils=feature_utils, | |
net=net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=cfg_strength) | |
audio = audios.float().cpu()[0] | |
video_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name | |
make_video(video, | |
video_save_path, | |
audio, | |
sampling_rate=seq_cfg.sampling_rate, | |
duration_sec=seq_cfg.duration) | |
return video_save_path | |
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float, | |
duration: float): | |
prompt = translate_prompt(prompt) | |
negative_prompt = translate_prompt(negative_prompt) | |
rng = torch.Generator(device=device) | |
rng.manual_seed(seed) | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
clip_frames = sync_frames = None | |
seq_cfg.duration = duration | |
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) | |
audios = generate(clip_frames, | |
sync_frames, [prompt], | |
negative_text=[negative_prompt], | |
feature_utils=feature_utils, | |
net=net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=cfg_strength) | |
audio = audios.float().cpu()[0] | |
audio_save_path = tempfile.NamedTemporaryFile(delete=False, suffix='.flac').name | |
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate) | |
return audio_save_path | |
# CSS ์คํ์ผ ์์ | |
custom_css = """ | |
.gradio-container { | |
background: linear-gradient(45deg, #1a1a1a, #2a2a2a); | |
border-radius: 15px; | |
box-shadow: 0 8px 32px rgba(0,0,0,0.3); | |
color: #e0e0e0; | |
} | |
.input-container, .output-container { | |
background: rgba(40, 40, 40, 0.95); | |
backdrop-filter: blur(10px); | |
border-radius: 10px; | |
padding: 20px; | |
transform-style: preserve-3d; | |
transition: transform 0.3s ease; | |
border: 1px solid rgba(255, 255, 255, 0.1); | |
} | |
.input-container:hover { | |
transform: translateZ(20px); | |
box-shadow: 0 8px 32px rgba(0,0,0,0.5); | |
} | |
.gallery-item { | |
transition: transform 0.3s ease; | |
border-radius: 8px; | |
overflow: hidden; | |
background: #2a2a2a; | |
} | |
.gallery-item:hover { | |
transform: scale(1.05); | |
box-shadow: 0 4px 15px rgba(0,0,0,0.4); | |
} | |
.tabs { | |
background: rgba(30, 30, 30, 0.95); | |
border-radius: 10px; | |
padding: 10px; | |
border: 1px solid rgba(255, 255, 255, 0.05); | |
} | |
button { | |
background: linear-gradient(45deg, #2196F3, #1976D2); | |
border: none; | |
border-radius: 5px; | |
transition: all 0.3s ease; | |
color: white; | |
} | |
button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 4px 15px rgba(33,150,243,0.3); | |
} | |
/* ํ ์คํธ ์ ๋ ฅ ํ๋ ์คํ์ผ */ | |
textarea, input[type="text"], input[type="number"] { | |
background: rgba(30, 30, 30, 0.95) !important; | |
border: 1px solid rgba(255, 255, 255, 0.1) !important; | |
color: #e0e0e0 !important; | |
border-radius: 5px !important; | |
} | |
/* ๋ ์ด๋ธ ์คํ์ผ */ | |
label { | |
color: #e0e0e0 !important; | |
} | |
/* ๊ฐค๋ฌ๋ฆฌ ๊ทธ๋ฆฌ๋ ์คํ์ผ */ | |
.gallery { | |
background: rgba(30, 30, 30, 0.95); | |
padding: 15px; | |
border-radius: 10px; | |
border: 1px solid rgba(255, 255, 255, 0.05); | |
} | |
""" | |
text_to_audio_tab = gr.Interface( | |
fn=text_to_audio, | |
inputs=[ | |
gr.Textbox(label="Prompt(ํ๊ธ์ง์)"), | |
gr.Textbox(label="Negative Prompt"), | |
gr.Number(label="Seed", value=0), | |
gr.Number(label="Steps", value=25), | |
gr.Number(label="Guidance Scale", value=4.5), | |
gr.Number(label="Duration (sec)", value=8), | |
], | |
outputs=gr.Audio(label="Generated Audio"), | |
css=custom_css | |
) | |
video_to_audio_tab = gr.Interface( | |
fn=video_to_audio, | |
inputs=[ | |
gr.Video(label="Input Video"), | |
gr.Textbox(label="Prompt(ํ๊ธ์ง์)"), | |
gr.Textbox(label="Negative Prompt", value="music"), | |
gr.Number(label="Seed", value=0), | |
gr.Number(label="Steps", value=25), | |
gr.Number(label="Guidance Scale", value=4.5), | |
gr.Number(label="Duration (sec)", value=8), | |
], | |
outputs=gr.Video(label="Generated Result"), | |
css=custom_css | |
) | |
# ์ธํฐํ์ด์ค ์ ์ ์์ (์๋ฌธ์ผ๋ก ๋ณ๊ฒฝ) | |
video_search_tab = gr.Interface( | |
fn=search_videos, | |
inputs=gr.Textbox(label="Search Query(ํ๊ธ์ง์)"), | |
outputs=gr.Gallery(label="Search Results", columns=4, rows=20), | |
css=custom_css, | |
api_name=False | |
) | |
# ๋ฉ์ธ ์คํ ๋ถ๋ถ ์์ | |
if __name__ == "__main__": | |
gr.TabbedInterface( | |
[video_search_tab, video_to_audio_tab, text_to_audio_tab], | |
["Video Search", "Video-to-Audio", "Text-to-Audio"], | |
css=custom_css | |
).launch(allowed_paths=[output_dir]) | |