karthikeyan-r's picture
Create app.py
be240ea verified
raw
history blame
7.26 kB
from typing import List
import pandas as pd
from transformers import AutoTokenizer, AutoModel
import torch
from langchain_community.document_loaders import PyPDFLoader
from IPython.display import display
import os
os.system('apt-get install poppler-utils')
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import streamlit as st
class PDFProcessor:
"""
Class for processing PDF files to extract text content.
"""
def extract_text_from_pdfs(self, file_paths: List[str]) -> List[str]:
"""
Extract text content from a list of PDF files.
Args:
file_paths (List[str]): A list of file paths to the PDF documents.
Returns:
List[str]: A list of text content extracted from the PDF documents.
"""
texts = []
for file_path in file_paths:
try:
loader = PyPDFLoader(file_path)
pages = loader.load_and_split()
for page in pages:
if isinstance(page.page_content, bytes):
text = page.page_content.decode('utf-8', errors='ignore')
elif isinstance(page.page_content, str):
text = page.page_content
else:
print(f"Unexpected type: {type(page.page_content)}")
continue
texts.append(text)
except Exception as e:
print(f"Failed to process {file_path}: {e}")
return texts
class EmbeddingsProcessor:
"""
Class for processing text to obtain embeddings using a transformer model.
"""
def __init__(self, model_name: str):
"""
Initialize the EmbeddingsProcessor with a pre-trained model.
Args:
model_name (str): The name of the pre-trained model to use for generating embeddings.
"""
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name).to('cuda')
def get_embeddings(self, texts: List[str]) -> np.ndarray:
"""
Generate embeddings for a list of texts.
Args:
texts (List[str]): A list of text strings for which to generate embeddings.
Returns:
np.ndarray: A NumPy array of embeddings for the provided texts.
"""
encoded_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
encoded_input = {k: v.to('cuda') for k, v in encoded_input.items()}
model_output = self.model(**encoded_input)
return model_output.last_hidden_state.mean(dim=1).detach().cpu().numpy()
def compute_similarity(template_embeddings: np.ndarray, contract_embeddings: np.ndarray) -> np.ndarray:
"""
Compute cosine similarity between template and contract embeddings.
Args:
template_embeddings (np.ndarray): A NumPy array of template embeddings.
contract_embeddings (np.ndarray): A NumPy array of contract embeddings.
Returns:
np.ndarray: A NumPy array of similarity scores between contracts and templates.
"""
return cosine_similarity(contract_embeddings, template_embeddings)
def clear_folder(path):
if not os.path.exists(path):
os.makedirs(path) # Create the directory if it doesn't exist
for file in os.listdir(path):
file_path = os.path.join(path, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
print(f"Failed to delete {file_path}: {e}")
def save_uploaded_file(uploaded_file, path):
try:
with open(os.path.join(path, uploaded_file.name), "wb") as f:
f.write(uploaded_file.getbuffer())
return True
except:
return False
# Streamlit UI
st.title('PDF Similarity Checker')
col1, col2 = st.columns(2)
# Clear the templates and contracts folders before uploading new files
templates_folder = './templates'
contracts_folder = './contracts'
clear_folder(templates_folder)
clear_folder(contracts_folder)
with col1:
st.header("Upload Templates")
uploaded_files_templates = st.file_uploader("Choose PDF files", accept_multiple_files=True, type=['pdf'])
os.makedirs(templates_folder, exist_ok=True)
for uploaded_file in uploaded_files_templates:
if save_uploaded_file(uploaded_file, templates_folder):
st.write(f"Saved: {uploaded_file.name}")
with col2:
st.header("Upload Contracts")
uploaded_files_contracts = st.file_uploader("Choose PDF files", key="contracts", accept_multiple_files=True, type=['pdf'])
os.makedirs(contracts_folder, exist_ok=True)
for uploaded_file in uploaded_files_contracts:
if save_uploaded_file(uploaded_file, contracts_folder):
st.write(f"Saved: {uploaded_file.name}")
model_name = st.selectbox("Select Model", ['sentence-transformers/multi-qa-mpnet-base-dot-v1'], index=0)
if st.button("Compute Similarities"):
pdf_processor = PDFProcessor()
embedding_processor = EmbeddingsProcessor(model_name)
# Process templates
template_files = [os.path.join(templates_folder, f) for f in os.listdir(templates_folder)]
template_texts = [pdf_processor.extract_text_from_pdfs([f])[0] for f in template_files if pdf_processor.extract_text_from_pdfs([f])]
template_embeddings = embedding_processor.get_embeddings(template_texts)
# Process contracts
contract_files = [os.path.join(contracts_folder, f) for f in os.listdir(contracts_folder)]
contract_texts = [pdf_processor.extract_text_from_pdfs([f])[0] for f in contract_files if pdf_processor.extract_text_from_pdfs([f])]
contract_embeddings = embedding_processor.get_embeddings(contract_texts)
# Compute similarities
similarities = compute_similarity(template_embeddings, contract_embeddings)
# Display results in a table format
similarity_data = []
for i, contract_file in enumerate(contract_files):
row = [i + 1, os.path.basename(contract_file)] # SI No and contract file name
for j in range(len(template_files)):
if j < similarities.shape[1] and i < similarities.shape[0]: # Check if indices are within bounds
row.append(f"{similarities[i, j] * 100:.2f}%") # Format as percentage
else:
row.append("N/A") # Handle out-of-bounds indices gracefully
similarity_data.append(row)
# Create a DataFrame for the table
columns = ["SI No", "Contract"] + [os.path.basename(template_files[j]) for j in range(len(template_files))]
similarity_df = pd.DataFrame(similarity_data, columns=columns)
# Display maximize option
if st.checkbox("Maximize Table View"):
st.write("Similarity Scores Table (Maximized):")
st.dataframe(similarity_df) # Maximized view
else:
st.write("Similarity Scores Table:")
st.table(similarity_df.style.hide(axis="index")) # Normal view
# Download option
csv = similarity_df.to_csv(index=False).encode('utf-8')
st.download_button(
label="Download Similarity Table as CSV",
data=csv,
file_name='similarity_scores.csv',
mime='text/csv',
)