robertselvam commited on
Commit
3c68453
·
1 Parent(s): 6aa5c72

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +207 -198
app.py CHANGED
@@ -14,17 +14,22 @@ import mimetypes
14
  import validators
15
  import requests
16
  import tempfile
17
- from bs4 import BeautifulSoup
18
  from langchain.chains import create_extraction_chain
19
  from GoogleNews import GoogleNews
20
  import pandas as pd
 
21
  import gradio as gr
22
  import re
23
  from langchain.document_loaders import WebBaseLoader
24
- from langchain.chains.llm import LLMChain
25
  from langchain.chains.combine_documents.stuff import StuffDocumentsChain
26
  from transformers import pipeline
27
  import plotly.express as px
 
 
 
 
 
 
28
 
29
  class KeyValueExtractor:
30
 
@@ -38,153 +43,189 @@ class KeyValueExtractor:
38
  """
39
  self.model = "facebook/bart-large-mnli"
40
 
41
- def get_news(self,keyword):
 
42
 
43
- googlenews = GoogleNews(lang='en', region='US', period='1d', encode='utf-8')
44
- googlenews.clear()
45
- googlenews.search(keyword)
46
- googlenews.get_page(2)
47
- news_result = googlenews.result(sort=True)
48
- news_data_df = pd.DataFrame.from_dict(news_result)
49
 
50
- news_data_df.info()
 
 
 
 
51
 
52
- # Display header of dataframe.
53
- news_data_df.head()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
- tot_news_link = []
56
- for index, headers in news_data_df.iterrows():
57
- news_link = str(headers['link'])
58
- tot_news_link.append(news_link)
59
 
60
- return tot_news_link
 
61
 
62
- def url_format(self,urls):
 
63
 
64
- tot_url_links = []
65
- for url_text in urls:
66
- # Define a regex pattern to match URLs starting with 'http' or 'https'
67
- pattern = r'(https?://[^\s]+)'
68
 
69
- # Search for the URL in the text using the regex pattern
70
- match = re.search(pattern, url_text)
 
 
 
 
 
71
 
72
- if match:
73
- extracted_url = match.group(1)
74
- tot_url_links.append(extracted_url)
 
 
 
 
75
 
76
- else:
77
- print("No URL found in the given text.")
78
 
79
- return tot_url_links
 
 
 
 
 
 
 
 
80
 
81
- def clear_error_ulr(self,urls):
82
- error_url = []
83
- for url in urls:
84
- if validators.url(url):
85
- headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
86
- r = requests.get(url,headers=headers)
87
- if r.status_code != 200:
88
- # raise ValueError("Check the url of your file; returned status code %s" % r.status_code)
89
- print(f"Error fetching {url}:")
90
- error_url.append(url)
91
- continue
92
- cleaned_list_url = [item for item in urls if item not in error_url]
93
- return cleaned_list_url
94
 
95
- def get_each_link_summary(self,urls):
 
 
 
 
 
96
 
97
- each_link_summary = ""
 
 
 
98
 
99
- for url in urls:
100
- loader = WebBaseLoader(url)
101
- docs = loader.load()
102
- text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
103
- chunk_size=3000, chunk_overlap=200
104
- )
105
 
106
- # Split the documents into chunks
107
- split_docs = text_splitter.split_documents(docs)
108
 
109
- # Prepare the prompt template for summarization
110
- prompt_template = """Write a concise summary of the following:
111
- {text}
112
- CONCISE SUMMARY:"""
113
- prompt = PromptTemplate.from_template(prompt_template)
114
 
115
- # Prepare the template for refining the summary with additional context
116
- refine_template = (
117
- "Your job is to produce a final summary\n"
118
- "We have provided an existing summary up to a certain point: {existing_answer}\n"
119
- "We have the opportunity to refine the existing summary"
120
- "(only if needed) with some more context below.\n"
121
- "------------\n"
122
- "{text}\n"
123
- "------------\n"
124
- "Given the new context, refine the original summary"
125
- "If the context isn't useful, return the original summary."
126
- )
127
- refine_prompt = PromptTemplate.from_template(refine_template)
128
 
129
- # Load the summarization chain using the ChatOpenAI language model
130
- chain = load_summarize_chain(
131
- llm = ChatOpenAI(temperature=0),
132
- chain_type="refine",
133
- question_prompt=prompt,
134
- refine_prompt=refine_prompt,
135
- return_intermediate_steps=True,
136
- input_key="input_documents",
137
- output_key="output_text",
138
- )
139
 
140
- # Generate the refined summary using the loaded summarization chain
141
- result = chain({"input_documents": split_docs}, return_only_outputs=True)
142
- print(result["output_text"])
143
 
144
- # Return the refined summary
145
- each_link_summary = each_link_summary + result["output_text"]
 
 
146
 
147
- return each_link_summary
148
 
149
- def save_text_to_file(self,each_link_summary) -> str:
 
 
 
 
 
150
 
151
- """
152
- Load the text from the saved file and split it into documents.
153
 
154
- Returns:
155
- List[str]: List of document texts.
156
- """
157
 
158
- # Get the path to the text file where the extracted text will be saved
159
- file_path = "extracted_text.txt"
160
- try:
161
- with open(file_path, 'w') as file:
162
- # Write the extracted text into the text file
163
- file.write(each_link_summary)
164
- # Return the file path of the saved text file
165
- return file_path
166
- except IOError as e:
167
- # If an IOError occurs during the file saving process, log the error
168
- logging.error(f"Error while saving text to file: {e}")
169
 
170
- def document_loader(self,file_path) -> List[str]:
171
 
172
- """
173
- Load the text from the saved file and split it into documents.
174
 
175
- Returns:
176
- List[str]: List of document texts.
177
- """
178
-
179
- # Initialize the UnstructuredFileLoader
180
- loader = UnstructuredFileLoader(file_path, strategy="fast")
181
- # Load the documents from the file
182
  docs = loader.load()
183
 
184
- # Return the list of loaded document texts
185
  return docs
186
 
187
- def document_text_spilliter(self,docs) -> List[str]:
188
 
189
  """
190
  Split documents into chunks for efficient processing.
@@ -195,7 +236,7 @@ class KeyValueExtractor:
195
 
196
  # Initialize the text splitter with specified chunk size and overlap
197
  text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
198
- chunk_size=3000, chunk_overlap=200
199
  )
200
 
201
  # Split the documents into chunks
@@ -204,45 +245,33 @@ class KeyValueExtractor:
204
  # Return the list of split document chunks
205
  return split_docs
206
 
207
- def extract_key_value_pair(self,content) -> None:
208
-
209
- """
210
- Extract key-value pairs from the refined summary.
211
-
212
- Prints the extracted key-value pairs.
213
- """
214
 
215
- try:
216
 
217
- # Use OpenAI's Completion API to analyze the text and extract key-value pairs
218
- response = openai.Completion.create(
219
- engine="text-davinci-003", # You can choose a different engine as well
220
- temperature = 0,
221
- prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.",
222
- max_tokens=1000 # You can adjust the length of the response
223
- )
224
 
225
- # Extract and return the chatbot's reply
226
- result = response['choices'][0]['text'].strip()
227
- return result
228
- except Exception as e:
229
- # If an error occurs during the key-value extraction process, log the error
230
- logging.error(f"Error while extracting key-value pairs: {e}")
231
- print("Error:", e)
232
 
233
- def refine_summary(self,split_docs) -> str:
234
 
235
- """
236
- Refine the summary using the provided context.
237
 
238
- Returns:
239
- str: Refined summary.
240
- """
 
 
241
 
242
- # Prepare the prompt template for summarization
243
- prompt_template = """Write a detalied broad abractive summary of the following:
244
- {text}
245
- CONCISE SUMMARY:"""
246
  prompt = PromptTemplate.from_template(prompt_template)
247
 
248
  # Prepare the template for refining the summary with additional context
@@ -256,6 +285,7 @@ class KeyValueExtractor:
256
  "------------\n"
257
  "Given the new context, refine the original summary"
258
  "If the context isn't useful, return the original summary."
 
259
  )
260
  refine_prompt = PromptTemplate.from_template(refine_template)
261
 
@@ -272,54 +302,19 @@ class KeyValueExtractor:
272
 
273
  # Generate the refined summary using the loaded summarization chain
274
  result = chain({"input_documents": split_docs}, return_only_outputs=True)
275
-
276
- key_value_pair = self.extract_key_value_pair(result["output_text"])
277
-
278
  # Return the refined summary
279
- return result["output_text"],key_value_pair
280
-
281
- def analyze_sentiment_for_graph(self, text):
282
- pipe = pipeline("zero-shot-classification", model=self.model)
283
- label=["Positive", "Negative", "Neutral"]
284
- result = pipe(text, label)
285
- sentiment_scores = {
286
- result['labels'][0]: result['scores'][0],
287
- result['labels'][1]: result['scores'][1],
288
- result['labels'][2]: result['scores'][2]
289
- }
290
- return sentiment_scores
291
-
292
- def display_graph(self,text):
293
-
294
- sentiment_scores = self.analyze_sentiment_for_graph(text)
295
- labels = sentiment_scores.keys()
296
- scores = sentiment_scores.values()
297
- fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
298
- fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
299
- fig.update_layout(title="Sentiment Analysis",width=800)
300
-
301
- formatted_pairs = []
302
- for key, value in sentiment_scores.items():
303
- formatted_value = round(value, 2) # Round the value to two decimal places
304
- formatted_pairs.append(f"{key} : {formatted_value}")
305
-
306
- result_string = '\t'.join(formatted_pairs)
307
-
308
- return fig
309
 
310
  def main(self,keyword):
311
 
312
- urls = self.get_news(keyword)
313
- tot_urls = self.url_format(urls)
314
- clean_url = self.clear_error_ulr(tot_urls)
315
- each_link_summary = self.get_each_link_summary(clean_url)
316
- file_path = self.save_text_to_file(each_link_summary)
317
- docs = self.document_loader(file_path)
318
- split_docs = self.document_text_spilliter(docs)
319
- result = self.refine_summary(split_docs)
320
 
 
 
 
 
321
 
322
- return result
323
 
324
  def gradio_interface(self):
325
 
@@ -329,24 +324,38 @@ class KeyValueExtractor:
329
  <br><h1 style="color:#fff">summarizer</h1></center>""")
330
  with gr.Row(elem_id="col-container"):
331
  with gr.Column(scale=1.0, min_width=150, ):
332
- input_news = gr.Textbox(label="NEWS")
333
  with gr.Row(elem_id="col-container"):
334
  with gr.Column(scale=1.0, min_width=150):
335
  analyse = gr.Button("Analyse")
336
  with gr.Row(elem_id="col-container"):
337
  with gr.Column(scale=0.50, min_width=150):
338
- result_summary = gr.Textbox(label="Summary")
339
  with gr.Column(scale=0.50, min_width=150):
340
- key_value_pair_result = gr.Textbox(label="Key Value Pair")
 
 
 
 
 
 
 
 
 
 
 
 
341
  with gr.Row(elem_id="col-container"):
342
- with gr.Column(scale=0.70, min_width=0):
343
- plot =gr.Plot(label="Customer", size=(500, 600))
344
  with gr.Row(elem_id="col-container"):
345
  with gr.Column(scale=1.0, min_width=150):
346
- analyse_sentiment = gr.Button("Analyse")
347
 
348
  analyse.click(self.main, input_news, [result_summary,key_value_pair_result])
349
- analyse_sentiment.click(self.display_graph,result_summary,[plot])
 
 
350
 
351
  app.launch(debug=True)
352
 
 
14
  import validators
15
  import requests
16
  import tempfile
 
17
  from langchain.chains import create_extraction_chain
18
  from GoogleNews import GoogleNews
19
  import pandas as pd
20
+ import requests
21
  import gradio as gr
22
  import re
23
  from langchain.document_loaders import WebBaseLoader
 
24
  from langchain.chains.combine_documents.stuff import StuffDocumentsChain
25
  from transformers import pipeline
26
  import plotly.express as px
27
+ from langchain.document_loaders.csv_loader import CSVLoader
28
+ from langchain.chains.llm import LLMChain
29
+ import yfinance as yf
30
+ import pandas as pd
31
+ import nltk
32
+ from nltk.tokenize import sent_tokenize
33
 
34
  class KeyValueExtractor:
35
 
 
43
  """
44
  self.model = "facebook/bart-large-mnli"
45
 
46
+ def get_url(self,keyword):
47
+ return f"https://finance.yahoo.com/quote/{keyword}?p={keyword}"
48
 
49
+ def get_each_link_summary(self,url):
 
 
 
 
 
50
 
51
+ loader = WebBaseLoader(url)
52
+ docs = loader.load()
53
+ text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
54
+ chunk_size=3000, chunk_overlap=200
55
+ )
56
 
57
+ # Split the documents into chunks
58
+ split_docs = text_splitter.split_documents(docs)
59
+
60
+ # Prepare the prompt template for summarization
61
+ prompt_template = """The give text is Finance Stock Details for one company i want to get values for
62
+ Previous Close : [value]
63
+ Open : [value]
64
+ Bid : [value]
65
+ Ask : [value]
66
+ Day's Range : [value]
67
+ 52 Week Range : [value]
68
+ Volume : [value]
69
+ Avg. Volume : [value]
70
+ Market Cap : [value]
71
+ Beta (5Y Monthly) : [value]
72
+ PE Ratio (TTM) : [value]
73
+ EPS (TTM) : [value]
74
+ Earnings Date : [value]
75
+ Forward Dividend & Yield : [value]
76
+ Ex-Dividend Date : [value]
77
+ 1y Target Est : [value]
78
+ these details form that and Write a abractive summary about those details:
79
+ Given Text: {text}
80
+ CONCISE SUMMARY:"""
81
+ prompt = PromptTemplate.from_template(prompt_template)
82
+
83
+ # Prepare the template for refining the summary with additional context
84
+ refine_template = (
85
+ "Your job is to produce a final summary\n"
86
+ "We have provided an existing summary up to a certain point: {existing_answer}\n"
87
+ "We have the opportunity to refine the existing summary"
88
+ "(only if needed) with some more context below.\n"
89
+ "------------\n"
90
+ "{text}\n"
91
+ "------------\n"
92
+ "Given the new context, refine the original summary"
93
+ "If the context isn't useful, return the original summary."
94
+ )
95
+ refine_prompt = PromptTemplate.from_template(refine_template)
96
+
97
+ # Load the summarization chain using the ChatOpenAI language model
98
+ chain = load_summarize_chain(
99
+ llm = ChatOpenAI(temperature=0),
100
+ chain_type="refine",
101
+ question_prompt=prompt,
102
+ refine_prompt=refine_prompt,
103
+ return_intermediate_steps=True,
104
+ input_key="input_documents",
105
+ output_key="output_text",
106
+ )
107
+
108
+ # Generate the refined summary using the loaded summarization chain
109
+ result = chain({"input_documents": split_docs}, return_only_outputs=True)
110
+ print(result["output_text"])
111
+
112
+ return result["output_text"]
113
+
114
+ def one_day_summary(self,content) -> None:
115
+
116
+
117
+ # Use OpenAI's Completion API to analyze the text and extract key-value pairs
118
+ response = openai.Completion.create(
119
+ engine="text-davinci-003", # You can choose a different engine as well
120
+ temperature = 0,
121
+ prompt=f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```.",
122
+ max_tokens=1000 # You can adjust the length of the response
123
+ )
124
+
125
+ # Extract and return the chatbot's reply
126
+ result = response['choices'][0]['text'].strip()
127
+ print(result)
128
+ return result
129
 
130
+ def extract_key_value_pair(self,content) -> None:
 
 
 
131
 
132
+ """
133
+ Extract key-value pairs from the refined summary.
134
 
135
+ Prints the extracted key-value pairs.
136
+ """
137
 
138
+ try:
 
 
 
139
 
140
+ # Use OpenAI's Completion API to analyze the text and extract key-value pairs
141
+ response = openai.Completion.create(
142
+ engine="text-davinci-003", # You can choose a different engine as well
143
+ temperature = 0,
144
+ prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.",
145
+ max_tokens=1000 # You can adjust the length of the response
146
+ )
147
 
148
+ # Extract and return the chatbot's reply
149
+ result = response['choices'][0]['text'].strip()
150
+ return result
151
+ except Exception as e:
152
+ # If an error occurs during the key-value extraction process, log the error
153
+ logging.error(f"Error while extracting key-value pairs: {e}")
154
+ print("Error:", e)
155
 
156
+ def analyze_sentiment_for_graph(self, text):
 
157
 
158
+ pipe = pipeline("zero-shot-classification", model=self.model)
159
+ label=["Positive", "Negative", "Neutral"]
160
+ result = pipe(text, label)
161
+ sentiment_scores = {
162
+ result['labels'][0]: result['scores'][0],
163
+ result['labels'][1]: result['scores'][1],
164
+ result['labels'][2]: result['scores'][2]
165
+ }
166
+ return sentiment_scores
167
 
168
+ def display_graph(self,text):
 
 
 
 
 
 
 
 
 
 
 
 
169
 
170
+ sentiment_scores = self.analyze_sentiment_for_graph(text)
171
+ labels = sentiment_scores.keys()
172
+ scores = sentiment_scores.values()
173
+ fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
174
+ fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
175
+ fig.update_layout(title="Sentiment Analysis",width=800)
176
 
177
+ formatted_pairs = []
178
+ for key, value in sentiment_scores.items():
179
+ formatted_value = round(value, 2) # Round the value to two decimal places
180
+ formatted_pairs.append(f"{key} : {formatted_value}")
181
 
182
+ result_string = '\t'.join(formatted_pairs)
 
 
 
 
 
183
 
184
+ return fig
 
185
 
186
+ def get_finance_data(self,symbol):
 
 
 
 
187
 
188
+ # Define the stock symbol and date range
189
+ start_date = '2022-08-19'
190
+ end_date = '2023-08-19'
 
 
 
 
 
 
 
 
 
 
191
 
192
+ # Fetch historical OHLC data using yfinance
193
+ data = yf.download(symbol, start=start_date, end=end_date)
 
 
 
 
 
 
 
 
194
 
195
+ # Select only the OHLC columns
196
+ ohlc_data = data[['Open', 'High', 'Low', 'Close']]
 
197
 
198
+ csv_path = "ohlc_data.csv"
199
+ # Save the OHLC data to a CSV file
200
+ ohlc_data.to_csv(csv_path)
201
+ return csv_path
202
 
203
+ def csv_to_dataframe(self,csv_path):
204
 
205
+ # Replace 'your_file.csv' with the actual path to your CSV file
206
+ csv_file_path = csv_path
207
+ # Read the CSV file into a DataFrame
208
+ df = pd.read_csv(csv_file_path)
209
+ # Now you can work with the 'df' DataFrame
210
+ return df # Display the first few rows of the DataFrame
211
 
212
+ def save_dataframe_in_text_file(self,df):
 
213
 
214
+ output_file_path = 'output.txt'
 
 
215
 
216
+ # Convert the DataFrame to a text file
217
+ df.to_csv(output_file_path, sep='\t', index=False)
 
 
 
 
 
 
 
 
 
218
 
219
+ return output_file_path
220
 
221
+ def csv_loader(self,output_file_path):
 
222
 
223
+ loader = UnstructuredFileLoader(output_file_path, strategy="fast")
 
 
 
 
 
 
224
  docs = loader.load()
225
 
 
226
  return docs
227
 
228
+ def document_text_spilliter(self,docs):
229
 
230
  """
231
  Split documents into chunks for efficient processing.
 
236
 
237
  # Initialize the text splitter with specified chunk size and overlap
238
  text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
239
+ chunk_size=1000, chunk_overlap=200
240
  )
241
 
242
  # Split the documents into chunks
 
245
  # Return the list of split document chunks
246
  return split_docs
247
 
248
+ def change_bullet_points(self,text):
 
 
 
 
 
 
249
 
250
+ nltk.download('punkt') # Download the sentence tokenizer data (only need to run this once)
251
 
252
+ # Example passage
253
+ passage = text
 
 
 
 
 
254
 
255
+ # Tokenize the passage into sentences
256
+ sentences = sent_tokenize(passage)
257
+ bullet_string = ""
258
+ # Print the extracted sentences
259
+ for sentence in sentences:
260
+ bullet_string+="* "+sentence+"\n"
 
261
 
262
+ return bullet_string
263
 
264
+ def one_year_summary(self,keyword):
 
265
 
266
+ csv_path = self.get_finance_data(keyword)
267
+ df = self.csv_to_dataframe(csv_path)
268
+ output_file_path = self.save_dataframe_in_text_file(df)
269
+ docs = self.csv_loader(output_file_path)
270
+ split_docs = self.document_text_spilliter(docs)
271
 
272
+ prompt_template = """Analyze the Financial Details and Write a abractive quick short summary how the company perform up and down,Bullish/Bearish of the following:
273
+ {text}
274
+ CONCISE SUMMARY:"""
 
275
  prompt = PromptTemplate.from_template(prompt_template)
276
 
277
  # Prepare the template for refining the summary with additional context
 
285
  "------------\n"
286
  "Given the new context, refine the original summary"
287
  "If the context isn't useful, return the original summary."
288
+ "10 line summary is enough"
289
  )
290
  refine_prompt = PromptTemplate.from_template(refine_template)
291
 
 
302
 
303
  # Generate the refined summary using the loaded summarization chain
304
  result = chain({"input_documents": split_docs}, return_only_outputs=True)
305
+ one_year_perfomance_summary = self.change_bullet_points(result["output_text"])
 
 
306
  # Return the refined summary
307
+ return one_year_perfomance_summary
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308
 
309
  def main(self,keyword):
310
 
 
 
 
 
 
 
 
 
311
 
312
+ clean_url = self.get_url(keyword)
313
+ link_summary = self.get_each_link_summary(clean_url)
314
+ clean_summary = self.one_day_summary(link_summary)
315
+ key_value = self.extract_key_value_pair(clean_summary)
316
 
317
+ return clean_summary, key_value
318
 
319
  def gradio_interface(self):
320
 
 
324
  <br><h1 style="color:#fff">summarizer</h1></center>""")
325
  with gr.Row(elem_id="col-container"):
326
  with gr.Column(scale=1.0, min_width=150, ):
327
+ input_news = gr.Textbox(label="Company Name")
328
  with gr.Row(elem_id="col-container"):
329
  with gr.Column(scale=1.0, min_width=150):
330
  analyse = gr.Button("Analyse")
331
  with gr.Row(elem_id="col-container"):
332
  with gr.Column(scale=0.50, min_width=150):
333
+ result_summary = gr.Textbox(label="Summary", lines = 20)
334
  with gr.Column(scale=0.50, min_width=150):
335
+ key_value_pair_result = gr.Textbox(label="Key Value Pair", lines = 20)
336
+ with gr.Row(elem_id="col-container"):
337
+ with gr.Column(scale=1.0, min_width=0):
338
+ plot_for_day =gr.Plot(label="Sentiment", size=(500, 600))
339
+ with gr.Row(elem_id="col-container"):
340
+ with gr.Column(scale=1.0, min_width=150):
341
+ analyse_sentiment = gr.Button("Analyse Sentiment")
342
+ with gr.Row(elem_id="col-container"):
343
+ with gr.Column(scale=1.0, min_width=150, ):
344
+ one_year_summary = gr.Textbox(label="Summary Of One Year Perfomance",lines = 20)
345
+ with gr.Row(elem_id="col-container"):
346
+ with gr.Column(scale=1.0, min_width=150):
347
+ one_year = gr.Button("Analyse One Year Summary")
348
  with gr.Row(elem_id="col-container"):
349
+ with gr.Column(scale=1.0, min_width=0):
350
+ plot_for_year =gr.Plot(label="Sentiment", size=(500, 600))
351
  with gr.Row(elem_id="col-container"):
352
  with gr.Column(scale=1.0, min_width=150):
353
+ analyse_sentiment_for_year = gr.Button("Analyse Sentiment")
354
 
355
  analyse.click(self.main, input_news, [result_summary,key_value_pair_result])
356
+ analyse_sentiment.click(self.display_graph,result_summary,[plot_for_day])
357
+ one_year.click(self.one_year_summary,input_news,one_year_summary)
358
+ analyse_sentiment_for_year.click(self.display_graph,one_year_summary,[plot_for_year])
359
 
360
  app.launch(debug=True)
361