Spaces:
Sleeping
Sleeping
robertselvam
commited on
Commit
·
3c68453
1
Parent(s):
6aa5c72
Update app.py
Browse files
app.py
CHANGED
@@ -14,17 +14,22 @@ import mimetypes
|
|
14 |
import validators
|
15 |
import requests
|
16 |
import tempfile
|
17 |
-
from bs4 import BeautifulSoup
|
18 |
from langchain.chains import create_extraction_chain
|
19 |
from GoogleNews import GoogleNews
|
20 |
import pandas as pd
|
|
|
21 |
import gradio as gr
|
22 |
import re
|
23 |
from langchain.document_loaders import WebBaseLoader
|
24 |
-
from langchain.chains.llm import LLMChain
|
25 |
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
26 |
from transformers import pipeline
|
27 |
import plotly.express as px
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
class KeyValueExtractor:
|
30 |
|
@@ -38,153 +43,189 @@ class KeyValueExtractor:
|
|
38 |
"""
|
39 |
self.model = "facebook/bart-large-mnli"
|
40 |
|
41 |
-
def
|
|
|
42 |
|
43 |
-
|
44 |
-
googlenews.clear()
|
45 |
-
googlenews.search(keyword)
|
46 |
-
googlenews.get_page(2)
|
47 |
-
news_result = googlenews.result(sort=True)
|
48 |
-
news_data_df = pd.DataFrame.from_dict(news_result)
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
for index, headers in news_data_df.iterrows():
|
57 |
-
news_link = str(headers['link'])
|
58 |
-
tot_news_link.append(news_link)
|
59 |
|
60 |
-
|
|
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
-
|
65 |
-
for url_text in urls:
|
66 |
-
# Define a regex pattern to match URLs starting with 'http' or 'https'
|
67 |
-
pattern = r'(https?://[^\s]+)'
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
print("No URL found in the given text.")
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
def
|
82 |
-
error_url = []
|
83 |
-
for url in urls:
|
84 |
-
if validators.url(url):
|
85 |
-
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
|
86 |
-
r = requests.get(url,headers=headers)
|
87 |
-
if r.status_code != 200:
|
88 |
-
# raise ValueError("Check the url of your file; returned status code %s" % r.status_code)
|
89 |
-
print(f"Error fetching {url}:")
|
90 |
-
error_url.append(url)
|
91 |
-
continue
|
92 |
-
cleaned_list_url = [item for item in urls if item not in error_url]
|
93 |
-
return cleaned_list_url
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
loader = WebBaseLoader(url)
|
101 |
-
docs = loader.load()
|
102 |
-
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
103 |
-
chunk_size=3000, chunk_overlap=200
|
104 |
-
)
|
105 |
|
106 |
-
|
107 |
-
split_docs = text_splitter.split_documents(docs)
|
108 |
|
109 |
-
|
110 |
-
prompt_template = """Write a concise summary of the following:
|
111 |
-
{text}
|
112 |
-
CONCISE SUMMARY:"""
|
113 |
-
prompt = PromptTemplate.from_template(prompt_template)
|
114 |
|
115 |
-
#
|
116 |
-
|
117 |
-
|
118 |
-
"We have provided an existing summary up to a certain point: {existing_answer}\n"
|
119 |
-
"We have the opportunity to refine the existing summary"
|
120 |
-
"(only if needed) with some more context below.\n"
|
121 |
-
"------------\n"
|
122 |
-
"{text}\n"
|
123 |
-
"------------\n"
|
124 |
-
"Given the new context, refine the original summary"
|
125 |
-
"If the context isn't useful, return the original summary."
|
126 |
-
)
|
127 |
-
refine_prompt = PromptTemplate.from_template(refine_template)
|
128 |
|
129 |
-
#
|
130 |
-
|
131 |
-
llm = ChatOpenAI(temperature=0),
|
132 |
-
chain_type="refine",
|
133 |
-
question_prompt=prompt,
|
134 |
-
refine_prompt=refine_prompt,
|
135 |
-
return_intermediate_steps=True,
|
136 |
-
input_key="input_documents",
|
137 |
-
output_key="output_text",
|
138 |
-
)
|
139 |
|
140 |
-
#
|
141 |
-
|
142 |
-
print(result["output_text"])
|
143 |
|
144 |
-
|
145 |
-
|
|
|
|
|
146 |
|
147 |
-
|
148 |
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
Load the text from the saved file and split it into documents.
|
153 |
|
154 |
-
|
155 |
-
List[str]: List of document texts.
|
156 |
-
"""
|
157 |
|
158 |
-
#
|
159 |
-
|
160 |
-
try:
|
161 |
-
with open(file_path, 'w') as file:
|
162 |
-
# Write the extracted text into the text file
|
163 |
-
file.write(each_link_summary)
|
164 |
-
# Return the file path of the saved text file
|
165 |
-
return file_path
|
166 |
-
except IOError as e:
|
167 |
-
# If an IOError occurs during the file saving process, log the error
|
168 |
-
logging.error(f"Error while saving text to file: {e}")
|
169 |
|
170 |
-
|
171 |
|
172 |
-
|
173 |
-
Load the text from the saved file and split it into documents.
|
174 |
|
175 |
-
|
176 |
-
List[str]: List of document texts.
|
177 |
-
"""
|
178 |
-
|
179 |
-
# Initialize the UnstructuredFileLoader
|
180 |
-
loader = UnstructuredFileLoader(file_path, strategy="fast")
|
181 |
-
# Load the documents from the file
|
182 |
docs = loader.load()
|
183 |
|
184 |
-
# Return the list of loaded document texts
|
185 |
return docs
|
186 |
|
187 |
-
def document_text_spilliter(self,docs)
|
188 |
|
189 |
"""
|
190 |
Split documents into chunks for efficient processing.
|
@@ -195,7 +236,7 @@ class KeyValueExtractor:
|
|
195 |
|
196 |
# Initialize the text splitter with specified chunk size and overlap
|
197 |
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
198 |
-
chunk_size=
|
199 |
)
|
200 |
|
201 |
# Split the documents into chunks
|
@@ -204,45 +245,33 @@ class KeyValueExtractor:
|
|
204 |
# Return the list of split document chunks
|
205 |
return split_docs
|
206 |
|
207 |
-
def
|
208 |
-
|
209 |
-
"""
|
210 |
-
Extract key-value pairs from the refined summary.
|
211 |
-
|
212 |
-
Prints the extracted key-value pairs.
|
213 |
-
"""
|
214 |
|
215 |
-
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
engine="text-davinci-003", # You can choose a different engine as well
|
220 |
-
temperature = 0,
|
221 |
-
prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.",
|
222 |
-
max_tokens=1000 # You can adjust the length of the response
|
223 |
-
)
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
print("Error:", e)
|
232 |
|
233 |
-
|
234 |
|
235 |
-
|
236 |
-
Refine the summary using the provided context.
|
237 |
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
CONCISE SUMMARY:"""
|
246 |
prompt = PromptTemplate.from_template(prompt_template)
|
247 |
|
248 |
# Prepare the template for refining the summary with additional context
|
@@ -256,6 +285,7 @@ class KeyValueExtractor:
|
|
256 |
"------------\n"
|
257 |
"Given the new context, refine the original summary"
|
258 |
"If the context isn't useful, return the original summary."
|
|
|
259 |
)
|
260 |
refine_prompt = PromptTemplate.from_template(refine_template)
|
261 |
|
@@ -272,54 +302,19 @@ class KeyValueExtractor:
|
|
272 |
|
273 |
# Generate the refined summary using the loaded summarization chain
|
274 |
result = chain({"input_documents": split_docs}, return_only_outputs=True)
|
275 |
-
|
276 |
-
key_value_pair = self.extract_key_value_pair(result["output_text"])
|
277 |
-
|
278 |
# Return the refined summary
|
279 |
-
return
|
280 |
-
|
281 |
-
def analyze_sentiment_for_graph(self, text):
|
282 |
-
pipe = pipeline("zero-shot-classification", model=self.model)
|
283 |
-
label=["Positive", "Negative", "Neutral"]
|
284 |
-
result = pipe(text, label)
|
285 |
-
sentiment_scores = {
|
286 |
-
result['labels'][0]: result['scores'][0],
|
287 |
-
result['labels'][1]: result['scores'][1],
|
288 |
-
result['labels'][2]: result['scores'][2]
|
289 |
-
}
|
290 |
-
return sentiment_scores
|
291 |
-
|
292 |
-
def display_graph(self,text):
|
293 |
-
|
294 |
-
sentiment_scores = self.analyze_sentiment_for_graph(text)
|
295 |
-
labels = sentiment_scores.keys()
|
296 |
-
scores = sentiment_scores.values()
|
297 |
-
fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
|
298 |
-
fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
|
299 |
-
fig.update_layout(title="Sentiment Analysis",width=800)
|
300 |
-
|
301 |
-
formatted_pairs = []
|
302 |
-
for key, value in sentiment_scores.items():
|
303 |
-
formatted_value = round(value, 2) # Round the value to two decimal places
|
304 |
-
formatted_pairs.append(f"{key} : {formatted_value}")
|
305 |
-
|
306 |
-
result_string = '\t'.join(formatted_pairs)
|
307 |
-
|
308 |
-
return fig
|
309 |
|
310 |
def main(self,keyword):
|
311 |
|
312 |
-
urls = self.get_news(keyword)
|
313 |
-
tot_urls = self.url_format(urls)
|
314 |
-
clean_url = self.clear_error_ulr(tot_urls)
|
315 |
-
each_link_summary = self.get_each_link_summary(clean_url)
|
316 |
-
file_path = self.save_text_to_file(each_link_summary)
|
317 |
-
docs = self.document_loader(file_path)
|
318 |
-
split_docs = self.document_text_spilliter(docs)
|
319 |
-
result = self.refine_summary(split_docs)
|
320 |
|
|
|
|
|
|
|
|
|
321 |
|
322 |
-
return
|
323 |
|
324 |
def gradio_interface(self):
|
325 |
|
@@ -329,24 +324,38 @@ class KeyValueExtractor:
|
|
329 |
<br><h1 style="color:#fff">summarizer</h1></center>""")
|
330 |
with gr.Row(elem_id="col-container"):
|
331 |
with gr.Column(scale=1.0, min_width=150, ):
|
332 |
-
input_news = gr.Textbox(label="
|
333 |
with gr.Row(elem_id="col-container"):
|
334 |
with gr.Column(scale=1.0, min_width=150):
|
335 |
analyse = gr.Button("Analyse")
|
336 |
with gr.Row(elem_id="col-container"):
|
337 |
with gr.Column(scale=0.50, min_width=150):
|
338 |
-
result_summary = gr.Textbox(label="Summary")
|
339 |
with gr.Column(scale=0.50, min_width=150):
|
340 |
-
key_value_pair_result = gr.Textbox(label="Key Value Pair")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
with gr.Row(elem_id="col-container"):
|
342 |
-
with gr.Column(scale=0
|
343 |
-
|
344 |
with gr.Row(elem_id="col-container"):
|
345 |
with gr.Column(scale=1.0, min_width=150):
|
346 |
-
|
347 |
|
348 |
analyse.click(self.main, input_news, [result_summary,key_value_pair_result])
|
349 |
-
analyse_sentiment.click(self.display_graph,result_summary,[
|
|
|
|
|
350 |
|
351 |
app.launch(debug=True)
|
352 |
|
|
|
14 |
import validators
|
15 |
import requests
|
16 |
import tempfile
|
|
|
17 |
from langchain.chains import create_extraction_chain
|
18 |
from GoogleNews import GoogleNews
|
19 |
import pandas as pd
|
20 |
+
import requests
|
21 |
import gradio as gr
|
22 |
import re
|
23 |
from langchain.document_loaders import WebBaseLoader
|
|
|
24 |
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
25 |
from transformers import pipeline
|
26 |
import plotly.express as px
|
27 |
+
from langchain.document_loaders.csv_loader import CSVLoader
|
28 |
+
from langchain.chains.llm import LLMChain
|
29 |
+
import yfinance as yf
|
30 |
+
import pandas as pd
|
31 |
+
import nltk
|
32 |
+
from nltk.tokenize import sent_tokenize
|
33 |
|
34 |
class KeyValueExtractor:
|
35 |
|
|
|
43 |
"""
|
44 |
self.model = "facebook/bart-large-mnli"
|
45 |
|
46 |
+
def get_url(self,keyword):
|
47 |
+
return f"https://finance.yahoo.com/quote/{keyword}?p={keyword}"
|
48 |
|
49 |
+
def get_each_link_summary(self,url):
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
loader = WebBaseLoader(url)
|
52 |
+
docs = loader.load()
|
53 |
+
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
54 |
+
chunk_size=3000, chunk_overlap=200
|
55 |
+
)
|
56 |
|
57 |
+
# Split the documents into chunks
|
58 |
+
split_docs = text_splitter.split_documents(docs)
|
59 |
+
|
60 |
+
# Prepare the prompt template for summarization
|
61 |
+
prompt_template = """The give text is Finance Stock Details for one company i want to get values for
|
62 |
+
Previous Close : [value]
|
63 |
+
Open : [value]
|
64 |
+
Bid : [value]
|
65 |
+
Ask : [value]
|
66 |
+
Day's Range : [value]
|
67 |
+
52 Week Range : [value]
|
68 |
+
Volume : [value]
|
69 |
+
Avg. Volume : [value]
|
70 |
+
Market Cap : [value]
|
71 |
+
Beta (5Y Monthly) : [value]
|
72 |
+
PE Ratio (TTM) : [value]
|
73 |
+
EPS (TTM) : [value]
|
74 |
+
Earnings Date : [value]
|
75 |
+
Forward Dividend & Yield : [value]
|
76 |
+
Ex-Dividend Date : [value]
|
77 |
+
1y Target Est : [value]
|
78 |
+
these details form that and Write a abractive summary about those details:
|
79 |
+
Given Text: {text}
|
80 |
+
CONCISE SUMMARY:"""
|
81 |
+
prompt = PromptTemplate.from_template(prompt_template)
|
82 |
+
|
83 |
+
# Prepare the template for refining the summary with additional context
|
84 |
+
refine_template = (
|
85 |
+
"Your job is to produce a final summary\n"
|
86 |
+
"We have provided an existing summary up to a certain point: {existing_answer}\n"
|
87 |
+
"We have the opportunity to refine the existing summary"
|
88 |
+
"(only if needed) with some more context below.\n"
|
89 |
+
"------------\n"
|
90 |
+
"{text}\n"
|
91 |
+
"------------\n"
|
92 |
+
"Given the new context, refine the original summary"
|
93 |
+
"If the context isn't useful, return the original summary."
|
94 |
+
)
|
95 |
+
refine_prompt = PromptTemplate.from_template(refine_template)
|
96 |
+
|
97 |
+
# Load the summarization chain using the ChatOpenAI language model
|
98 |
+
chain = load_summarize_chain(
|
99 |
+
llm = ChatOpenAI(temperature=0),
|
100 |
+
chain_type="refine",
|
101 |
+
question_prompt=prompt,
|
102 |
+
refine_prompt=refine_prompt,
|
103 |
+
return_intermediate_steps=True,
|
104 |
+
input_key="input_documents",
|
105 |
+
output_key="output_text",
|
106 |
+
)
|
107 |
+
|
108 |
+
# Generate the refined summary using the loaded summarization chain
|
109 |
+
result = chain({"input_documents": split_docs}, return_only_outputs=True)
|
110 |
+
print(result["output_text"])
|
111 |
+
|
112 |
+
return result["output_text"]
|
113 |
+
|
114 |
+
def one_day_summary(self,content) -> None:
|
115 |
+
|
116 |
+
|
117 |
+
# Use OpenAI's Completion API to analyze the text and extract key-value pairs
|
118 |
+
response = openai.Completion.create(
|
119 |
+
engine="text-davinci-003", # You can choose a different engine as well
|
120 |
+
temperature = 0,
|
121 |
+
prompt=f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```.",
|
122 |
+
max_tokens=1000 # You can adjust the length of the response
|
123 |
+
)
|
124 |
+
|
125 |
+
# Extract and return the chatbot's reply
|
126 |
+
result = response['choices'][0]['text'].strip()
|
127 |
+
print(result)
|
128 |
+
return result
|
129 |
|
130 |
+
def extract_key_value_pair(self,content) -> None:
|
|
|
|
|
|
|
131 |
|
132 |
+
"""
|
133 |
+
Extract key-value pairs from the refined summary.
|
134 |
|
135 |
+
Prints the extracted key-value pairs.
|
136 |
+
"""
|
137 |
|
138 |
+
try:
|
|
|
|
|
|
|
139 |
|
140 |
+
# Use OpenAI's Completion API to analyze the text and extract key-value pairs
|
141 |
+
response = openai.Completion.create(
|
142 |
+
engine="text-davinci-003", # You can choose a different engine as well
|
143 |
+
temperature = 0,
|
144 |
+
prompt=f"Get maximum count meaningfull key value pairs. content in backticks.```{content}```.",
|
145 |
+
max_tokens=1000 # You can adjust the length of the response
|
146 |
+
)
|
147 |
|
148 |
+
# Extract and return the chatbot's reply
|
149 |
+
result = response['choices'][0]['text'].strip()
|
150 |
+
return result
|
151 |
+
except Exception as e:
|
152 |
+
# If an error occurs during the key-value extraction process, log the error
|
153 |
+
logging.error(f"Error while extracting key-value pairs: {e}")
|
154 |
+
print("Error:", e)
|
155 |
|
156 |
+
def analyze_sentiment_for_graph(self, text):
|
|
|
157 |
|
158 |
+
pipe = pipeline("zero-shot-classification", model=self.model)
|
159 |
+
label=["Positive", "Negative", "Neutral"]
|
160 |
+
result = pipe(text, label)
|
161 |
+
sentiment_scores = {
|
162 |
+
result['labels'][0]: result['scores'][0],
|
163 |
+
result['labels'][1]: result['scores'][1],
|
164 |
+
result['labels'][2]: result['scores'][2]
|
165 |
+
}
|
166 |
+
return sentiment_scores
|
167 |
|
168 |
+
def display_graph(self,text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
sentiment_scores = self.analyze_sentiment_for_graph(text)
|
171 |
+
labels = sentiment_scores.keys()
|
172 |
+
scores = sentiment_scores.values()
|
173 |
+
fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
|
174 |
+
fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
|
175 |
+
fig.update_layout(title="Sentiment Analysis",width=800)
|
176 |
|
177 |
+
formatted_pairs = []
|
178 |
+
for key, value in sentiment_scores.items():
|
179 |
+
formatted_value = round(value, 2) # Round the value to two decimal places
|
180 |
+
formatted_pairs.append(f"{key} : {formatted_value}")
|
181 |
|
182 |
+
result_string = '\t'.join(formatted_pairs)
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
return fig
|
|
|
185 |
|
186 |
+
def get_finance_data(self,symbol):
|
|
|
|
|
|
|
|
|
187 |
|
188 |
+
# Define the stock symbol and date range
|
189 |
+
start_date = '2022-08-19'
|
190 |
+
end_date = '2023-08-19'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
+
# Fetch historical OHLC data using yfinance
|
193 |
+
data = yf.download(symbol, start=start_date, end=end_date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
+
# Select only the OHLC columns
|
196 |
+
ohlc_data = data[['Open', 'High', 'Low', 'Close']]
|
|
|
197 |
|
198 |
+
csv_path = "ohlc_data.csv"
|
199 |
+
# Save the OHLC data to a CSV file
|
200 |
+
ohlc_data.to_csv(csv_path)
|
201 |
+
return csv_path
|
202 |
|
203 |
+
def csv_to_dataframe(self,csv_path):
|
204 |
|
205 |
+
# Replace 'your_file.csv' with the actual path to your CSV file
|
206 |
+
csv_file_path = csv_path
|
207 |
+
# Read the CSV file into a DataFrame
|
208 |
+
df = pd.read_csv(csv_file_path)
|
209 |
+
# Now you can work with the 'df' DataFrame
|
210 |
+
return df # Display the first few rows of the DataFrame
|
211 |
|
212 |
+
def save_dataframe_in_text_file(self,df):
|
|
|
213 |
|
214 |
+
output_file_path = 'output.txt'
|
|
|
|
|
215 |
|
216 |
+
# Convert the DataFrame to a text file
|
217 |
+
df.to_csv(output_file_path, sep='\t', index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
return output_file_path
|
220 |
|
221 |
+
def csv_loader(self,output_file_path):
|
|
|
222 |
|
223 |
+
loader = UnstructuredFileLoader(output_file_path, strategy="fast")
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
docs = loader.load()
|
225 |
|
|
|
226 |
return docs
|
227 |
|
228 |
+
def document_text_spilliter(self,docs):
|
229 |
|
230 |
"""
|
231 |
Split documents into chunks for efficient processing.
|
|
|
236 |
|
237 |
# Initialize the text splitter with specified chunk size and overlap
|
238 |
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
239 |
+
chunk_size=1000, chunk_overlap=200
|
240 |
)
|
241 |
|
242 |
# Split the documents into chunks
|
|
|
245 |
# Return the list of split document chunks
|
246 |
return split_docs
|
247 |
|
248 |
+
def change_bullet_points(self,text):
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
nltk.download('punkt') # Download the sentence tokenizer data (only need to run this once)
|
251 |
|
252 |
+
# Example passage
|
253 |
+
passage = text
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
+
# Tokenize the passage into sentences
|
256 |
+
sentences = sent_tokenize(passage)
|
257 |
+
bullet_string = ""
|
258 |
+
# Print the extracted sentences
|
259 |
+
for sentence in sentences:
|
260 |
+
bullet_string+="* "+sentence+"\n"
|
|
|
261 |
|
262 |
+
return bullet_string
|
263 |
|
264 |
+
def one_year_summary(self,keyword):
|
|
|
265 |
|
266 |
+
csv_path = self.get_finance_data(keyword)
|
267 |
+
df = self.csv_to_dataframe(csv_path)
|
268 |
+
output_file_path = self.save_dataframe_in_text_file(df)
|
269 |
+
docs = self.csv_loader(output_file_path)
|
270 |
+
split_docs = self.document_text_spilliter(docs)
|
271 |
|
272 |
+
prompt_template = """Analyze the Financial Details and Write a abractive quick short summary how the company perform up and down,Bullish/Bearish of the following:
|
273 |
+
{text}
|
274 |
+
CONCISE SUMMARY:"""
|
|
|
275 |
prompt = PromptTemplate.from_template(prompt_template)
|
276 |
|
277 |
# Prepare the template for refining the summary with additional context
|
|
|
285 |
"------------\n"
|
286 |
"Given the new context, refine the original summary"
|
287 |
"If the context isn't useful, return the original summary."
|
288 |
+
"10 line summary is enough"
|
289 |
)
|
290 |
refine_prompt = PromptTemplate.from_template(refine_template)
|
291 |
|
|
|
302 |
|
303 |
# Generate the refined summary using the loaded summarization chain
|
304 |
result = chain({"input_documents": split_docs}, return_only_outputs=True)
|
305 |
+
one_year_perfomance_summary = self.change_bullet_points(result["output_text"])
|
|
|
|
|
306 |
# Return the refined summary
|
307 |
+
return one_year_perfomance_summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
def main(self,keyword):
|
310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
clean_url = self.get_url(keyword)
|
313 |
+
link_summary = self.get_each_link_summary(clean_url)
|
314 |
+
clean_summary = self.one_day_summary(link_summary)
|
315 |
+
key_value = self.extract_key_value_pair(clean_summary)
|
316 |
|
317 |
+
return clean_summary, key_value
|
318 |
|
319 |
def gradio_interface(self):
|
320 |
|
|
|
324 |
<br><h1 style="color:#fff">summarizer</h1></center>""")
|
325 |
with gr.Row(elem_id="col-container"):
|
326 |
with gr.Column(scale=1.0, min_width=150, ):
|
327 |
+
input_news = gr.Textbox(label="Company Name")
|
328 |
with gr.Row(elem_id="col-container"):
|
329 |
with gr.Column(scale=1.0, min_width=150):
|
330 |
analyse = gr.Button("Analyse")
|
331 |
with gr.Row(elem_id="col-container"):
|
332 |
with gr.Column(scale=0.50, min_width=150):
|
333 |
+
result_summary = gr.Textbox(label="Summary", lines = 20)
|
334 |
with gr.Column(scale=0.50, min_width=150):
|
335 |
+
key_value_pair_result = gr.Textbox(label="Key Value Pair", lines = 20)
|
336 |
+
with gr.Row(elem_id="col-container"):
|
337 |
+
with gr.Column(scale=1.0, min_width=0):
|
338 |
+
plot_for_day =gr.Plot(label="Sentiment", size=(500, 600))
|
339 |
+
with gr.Row(elem_id="col-container"):
|
340 |
+
with gr.Column(scale=1.0, min_width=150):
|
341 |
+
analyse_sentiment = gr.Button("Analyse Sentiment")
|
342 |
+
with gr.Row(elem_id="col-container"):
|
343 |
+
with gr.Column(scale=1.0, min_width=150, ):
|
344 |
+
one_year_summary = gr.Textbox(label="Summary Of One Year Perfomance",lines = 20)
|
345 |
+
with gr.Row(elem_id="col-container"):
|
346 |
+
with gr.Column(scale=1.0, min_width=150):
|
347 |
+
one_year = gr.Button("Analyse One Year Summary")
|
348 |
with gr.Row(elem_id="col-container"):
|
349 |
+
with gr.Column(scale=1.0, min_width=0):
|
350 |
+
plot_for_year =gr.Plot(label="Sentiment", size=(500, 600))
|
351 |
with gr.Row(elem_id="col-container"):
|
352 |
with gr.Column(scale=1.0, min_width=150):
|
353 |
+
analyse_sentiment_for_year = gr.Button("Analyse Sentiment")
|
354 |
|
355 |
analyse.click(self.main, input_news, [result_summary,key_value_pair_result])
|
356 |
+
analyse_sentiment.click(self.display_graph,result_summary,[plot_for_day])
|
357 |
+
one_year.click(self.one_year_summary,input_news,one_year_summary)
|
358 |
+
analyse_sentiment_for_year.click(self.display_graph,one_year_summary,[plot_for_year])
|
359 |
|
360 |
app.launch(debug=True)
|
361 |
|