emi-latest-demo / app.py
alfredplpl's picture
Update app.py
eecd0a1
raw
history blame
13.3 kB
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, EulerAncestralDiscreteScheduler
from transformers import CLIPFeatureExtractor
import gradio as gr
import torch
from PIL import Image
import random
import os
from huggingface_hub import hf_hub_download
model_id = 'aipicasso/picasso-diffusion-1-1'
auth_token=os.environ.get("ACCESS_TOKEN")
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", use_auth_token=auth_token)
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_id, use_auth_token=auth_token)
pipe_merged = StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler, use_auth_token=auth_token)
pipe_i2i_merged = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler,
requires_safety_checker=False,
safety_checker=None,
feature_extractor=feature_extractor, use_auth_token=auth_token
)
pipe=pipe_merged.to("cuda")
pipe_i2i=pipe_i2i_merged.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
pipe_i2i.enable_xformers_memory_efficient_attention()
embeddings_path=hf_hub_download(repo_id=model_id, filename="embeddings/negative/nfixer.pt", use_auth_token=auth_token)
embeddings_dict=torch.load(embeddings_path)
print(embeddings_dict)
if "string_to_param" in embeddings_dict:
embeddings = next(iter(embeddings_dict['string_to_param'].values()))
nfixer = ""
for i, emb in enumerate(embeddings):
token = f"sksd{chr(i+65)}"
nfixer += token
pipe.tokenizer.add_tokens(token)
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer))
token_id = pipe.tokenizer.convert_tokens_to_ids(token)
pipe.text_encoder.get_input_embeddings().weight.data[token_id] = emb
else:
nfixer = list(embeddings_dict.keys())[0]
embeddings = embeddings_dict[nfixer].to(pipe.text_encoder.get_input_embeddings().weight.dtype)
pipe.tokenizer.add_tokens(placeholder_token)
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer))
placeholder_token_id = pipe.tokenizer.convert_tokens_to_ids(placeholder_token)
pipe.text_encoder.get_input_embeddings().weight.data[placeholder_token_id] = embeddings
embeddings_path=hf_hub_download(repo_id=model_id, filename="embeddings/positive/embellish1.pt", use_auth_token=auth_token)
embeddings_dict=torch.load(embeddings_path)
print(embeddings_dict)
if "string_to_param" in embeddings_dict:
embeddings = next(iter(embeddings_dict['string_to_param'].values()))
embellish1 = ""
for i, emb in enumerate(embeddings):
token = f"kskd{chr(i%26+65)}{chr(i//26+65)}"
embellish1 += token
pipe.tokenizer.add_tokens(token)
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer))
token_id = pipe.tokenizer.convert_tokens_to_ids(token)
pipe.text_encoder.get_input_embeddings().weight.data[token_id] = emb
else:
embellish1 = list(embeddings_dict.keys())[0]
embeddings = embeddings_dict[embellish2].to(pipe.text_encoder.get_input_embeddings().weight.dtype)
pipe.tokenizer.add_tokens(placeholder_token)
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer))
placeholder_token_id = pipe.tokenizer.convert_tokens_to_ids(placeholder_token)
pipe.text_encoder.get_input_embeddings().weight.data[placeholder_token_id] = embeddings
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def inference(prompt, guidance, steps, image_size="Square", seed=0, img=None, strength=0.5, neg_prompt="", disable_auto_prompt_correction=False, image_style="Animetic", original_model=False):
global pipe,pipe_i2i
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,disable_auto_prompt_correction,image_style)
if(image_size=="Portrait"):
height=1024
width=768
elif(image_size=="Landscape"):
height=768
width=1024
elif(image_size=="Highreso."):
height=1024
width=1024
else:
height=768
width=768
print(prompt,neg_prompt)
try:
if img is not None:
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
else:
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
except Exception as e:
return None, error_str(e)
def auto_prompt_correction(prompt_ui,neg_prompt_ui,disable_auto_prompt_correction,image_style):
# auto prompt correction
prompt=str(prompt_ui)
neg_prompt=str(neg_prompt_ui)
prompt=prompt.lower()
neg_prompt=neg_prompt.lower()
if(image_style=="Animetic"):
style="anime"
else:
style=f"anime,{embellish1}"
if(disable_auto_prompt_correction):
prompt=f"{style}, {prompt}"
return prompt, neg_prompt
if(prompt=="" and neg_prompt==""):
prompt=f"{style}, masterpiece, portrait, a girl with flowers, good pupil, detailed"
neg_prompt=f"{nfixer},(((deformed))), blurry, ((((bad anatomy)))),3d, cg, text , bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts"
return prompt, neg_prompt
splited_prompt=prompt.replace(","," ").replace("_"," ").split(" ")
human_words=["1girl","girl","maid","maids","female","1woman","woman","girls","2girls","3girls","4girls","5girls","a couple of girls","women","1boy","boy","boys","a couple of boys","2boys","male","1man","1handsome","1bishounen","man","men","guy","guys"]
for word in human_words:
if( word in splited_prompt):
prompt=f"{style}, masterpiece, {prompt}, good pupil, detailed"
neg_prompt=f"{nfixer},(((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, 3d, cg, text, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts"
return prompt, neg_prompt
animal_words=["cat","dog","bird","pigeon","rabbit","bunny","horse"]
for word in animal_words:
if( word in splited_prompt):
prompt=f"{style}, a {prompt}, 4k, detailed"
neg_prompt=f"{nfixer}, girl, (((deformed))), blurry, ((((bad anatomy)))), {neg_prompt}, 3d, cg, text, bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, (mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts"
return prompt, neg_prompt
background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"]
for word in background_words:
if( word in splited_prompt):
prompt=f"{style}, shinkai makoto, {word}, highly detailed"
neg_prompt=f"girl, (((deformed))), {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text"
return prompt, neg_prompt
return prompt,neg_prompt
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
result = pipe(
prompt,
negative_prompt = neg_prompt,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return result.images[0]
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe_i2i(
prompt,
negative_prompt = neg_prompt,
init_image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
#width = width,
#height = height,
generator = generator)
return result.images[0]
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="main-div">
<div>
<h1>Picasso Diffusion 1.1 Demo</h1>
</div>
<p>
Demo for <a href="https://huggingface.co/alfredplpl/picasso-diffusion-1-1">Picasso Diffusion 1.1</a><br>
</p>
<p>
サンプル: そのままGenerateボタンを押してください。<br>
sample : Click "Generate" button without any prompts.
</p>
<p>
sample prompt1 : girl, kimono
</p>
<p>
sample prompt2 : boy, armor
</p>
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/settings'>Settings</a></b>"} <br>
<a style="display:inline-block" href="https://huggingface.co/spaces/aipicasso/picasso-diffusion-latest-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> to say goodbye from waiting for the generating.
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
with gr.Row():
image_style=gr.Radio(["Realistic","Animetic"])
image_style.show_label=False
image_style.value="Animetic"
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
image_out = gr.Image(height=768,width=768)
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.")
#original_model = gr.Checkbox(label="Change the model into the original model.")
with gr.Row():
image_size=gr.Radio(["Portrait","Landscape","Square","Highreso."])
image_size.show_label=False
image_size.value="Square"
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=75, step=1)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
inputs = [prompt, guidance, steps, image_size, seed, image, strength, neg_prompt, disable_auto_prompt_correction,image_style]#, original_model]
outputs = [image_out, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs,api_name="generate")
demo.queue(concurrency_count=1)
demo.launch()