emi-latest-demo / app.py
alfredplpl's picture
Update app.py
7f9e2a9
raw
history blame
10.3 kB
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import torch
from PIL import Image
import random
import os
from huggingface_hub import hf_hub_download
import torch
from torch import autocast
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from safetensors import safe_open
from compel import Compel, ReturnedEmbeddingsType
from huggingface_hub import hf_hub_download
model_id = 'aipicasso/emi'
auth_token=os.environ["ACCESS_TOKEN"]
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", use_auth_token=auth_token)
pipe = StableDiffusionXLPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler, use_auth_token=auth_token)
pipe=pipe.to("cuda")
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
token_num=65
unaestheticXLv31=""
embeddings_dict = {}
with safe_open("unaestheticXLv31.safetensors", framework="pt") as f:
for k in f.keys():
embeddings_dict[k] = f.get_tensor(k)
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
pipe.text_encoder_2.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
for i in range(len(embeddings_dict["clip_l"])):
token = f"sksd{chr(token_num)}"
token_num+=1
unaestheticXLv31 += token
pipe.tokenizer.add_tokens(token)
token_id = pipe.tokenizer.convert_tokens_to_ids(token)
pipe.text_encoder.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_l"][i]
pipe.text_encoder_2.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_g"][i]
unaestheticXLv1=""
embeddings_dict = {}
with safe_open("unaestheticXLv1.safetensors", framework="pt") as f:
for k in f.keys():
embeddings_dict[k] = f.get_tensor(k)
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
pipe.text_encoder_2.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
for i in range(len(embeddings_dict["clip_l"])):
token = f"sksd{chr(token_num)}"
token_num+=1
unaestheticXLv1 += token
pipe.tokenizer.add_tokens(token)
token_id = pipe.tokenizer.convert_tokens_to_ids(token)
pipe.text_encoder.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_l"][i]
pipe.text_encoder_2.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_g"][i]
unaestheticXLv13=""
embeddings_dict = {}
with safe_open("unaestheticXLv13.safetensors", framework="pt") as f:
for k in f.keys():
embeddings_dict[k] = f.get_tensor(k)
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
pipe.text_encoder_2.resize_token_embeddings(len(pipe.tokenizer),pad_to_multiple_of=128)
for i in range(len(embeddings_dict["clip_l"])):
token = f"sksd{chr(token_num)}"
unaestheticXLv13 += token
token_num+=1
pipe.tokenizer.add_tokens(token)
token_id = pipe.tokenizer.convert_tokens_to_ids(token)
pipe.text_encoder.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_l"][i]
pipe.text_encoder_2.get_input_embeddings().weight.data[token_id] = embeddings_dict["clip_g"][i]
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] ,
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True])
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def inference(prompt, guidance, steps, seed=0, neg_prompt="", disable_auto_prompt_correction=False):
global pipe
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,disable_auto_prompt_correction)
height=1024
width=1024
print(prompt,neg_prompt)
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
def auto_prompt_correction(prompt_ui,neg_prompt_ui,disable_auto_prompt_correction):
# auto prompt correction
prompt=str(prompt_ui)
neg_prompt=str(neg_prompt_ui)
prompt=prompt.lower()
neg_prompt=neg_prompt.lower()
if(disable_auto_prompt_correction):
return prompt, neg_prompt
if(prompt=="" and neg_prompt==""):
prompt="1girl++, smile--, brown bob+++ hair, brown eyes, sunflowers, sky, transparent++"
neg_prompt=f"({unaestheticXLv31})---, photo, deformed, realism, disfigured, low contrast, bad hand"
return prompt, neg_prompt
splited_prompt=prompt.replace(","," ").replace("_"," ").replace("+"," ").split(" ")
human_words=["1girl","girl","maid","maids","female","1woman","woman","girls","2girls","3girls","4girls","5girls","a couple of girls","women","1boy","boy","boys","a couple of boys","2boys","male","1man","1handsome","1bishounen","man","men","guy","guys"]
for word in human_words:
if( word in splited_prompt):
prompt=f"anime artwork, anime style, {prompt}"
neg_prompt=f"({unaestheticXLv31})---,{neg_prompt}, photo, deformed, realism, disfigured, low contrast, bad hand"
return prompt, neg_prompt
animal_words=["cat","dog","bird","pigeon","rabbit","bunny","horse"]
for word in animal_words:
if( word in splited_prompt):
prompt=f"anime style, a {prompt}, 4k, detailed"
neg_prompt=f"{neg_prompt},({unaestheticXLv31})---"
return prompt, neg_prompt
background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"]
for word in background_words:
if( word in splited_prompt):
prompt=f"anime artwork, anime style, {prompt}, highly detailed"
neg_prompt=f"girl, deformed+++, {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text"
return prompt, neg_prompt
return prompt,neg_prompt
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
conditioning, pooled = compel([prompt, neg_prompt])
result = pipe(
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return result.images[0]
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="main-div">
<div>
<h1>Emi Demo</h1>
</div>
<p>
Demo for <a href="https://huggingface.co/aipicasso/emi">Emi</a><br>
</p>
<p>
サンプル: そのままGenerateボタンを押してください。<br>
sample : Click "Generate" button without any prompts.
</p>
<p>
sample prompt1 : 1girl++, cool+, smile--, colorful long hair, colorful eyes, stars, night, pastel color, transparent+
</p>
<p>
sample prompt2 : 1man+, focus, wavy short hair, blue eyes, black shirt, white background, simple background
</p>
<p>
sample prompt3 : anime style, 1girl++
</p>
<p>
共有ボタンを押してみんなに画像を共有しましょう。Please push share button to share your image.
</p>
<p>
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/settings'>Settings</a></b>"} <br>
<a style="display:inline-block" href="https://huggingface.co/spaces/aipicasso/emi-latest-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> to say goodbye from waiting for the generating.
<h2>
<a href="https://e5b26b1151bf4a7fe2.gradio.live"> | Emi Demo (Sub) | </a>
<a href="https://e4f3a9ae48c8c4921e.gradio.live"> Emi Stable Demo | </a>
<a href="https://07f0307923ad05d680.gradio.live"> Emix Demo 1 |</a>
<a href="https://471d8ebdaf5d5c5aa5.gradio.live/"> Emix Demo 2 |</a>
</h2>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]")
generate = gr.Button(value="Generate")
image_out = gr.Image()
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.")
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=25)
steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=30, step=1)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
inputs = [prompt, guidance, steps, seed, neg_prompt, disable_auto_prompt_correction]
outputs = [image_out, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
demo.queue(concurrency_count=1)
demo.launch()