Spaces:
Running
on
Zero
Running
on
Zero
from diffusers import AutoPipelineForText2Image, EulerAncestralDiscreteScheduler | |
from diffusers import UniPCMultistepScheduler | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import random | |
import os | |
from huggingface_hub import hf_hub_download | |
import torch | |
from torch import autocast | |
from safetensors import safe_open | |
from compel import Compel, ReturnedEmbeddingsType | |
from safetensors.torch import load_file | |
import spaces | |
model_id = "aipicasso/emix-0-5" | |
auth_token=os.environ["ACCESS_TOKEN"] | |
repo = "ByteDance/SDXL-Lightning" | |
ckpt = "sdxl_lightning_8step_lora.safetensors" | |
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler",token=auth_token) | |
pipe = AutoPipelineForText2Image.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
scheduler=scheduler, | |
token=auth_token) | |
pipe.load_lora_weights(hf_hub_download(repo, ckpt)) | |
pipe.fuse_lora() | |
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4) | |
state_dict = load_file("unaestheticXLv31.safetensors") | |
pipe.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) | |
pipe.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) | |
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , | |
text_encoder=[pipe.text_encoder, pipe.text_encoder_2], | |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
requires_pooled=[False, True]) | |
pipe=pipe.to("cuda") | |
def error_str(error, title="Error"): | |
return f"""#### {title} | |
{error}""" if error else "" | |
def inference(prompt, guidance, steps, seed=0, neg_prompt="", disable_auto_prompt_correction=False): | |
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None | |
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,disable_auto_prompt_correction) | |
height=1024 | |
width=1024 | |
print(prompt,neg_prompt) | |
result=txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator) | |
return result, None | |
def auto_prompt_correction(prompt_ui,neg_prompt_ui,disable_auto_prompt_correction): | |
# auto prompt correction | |
prompt=str(prompt_ui) | |
neg_prompt=str(neg_prompt_ui) | |
prompt=prompt.lower() | |
neg_prompt=neg_prompt.lower() | |
if(disable_auto_prompt_correction): | |
return prompt, neg_prompt | |
if(prompt=="" and neg_prompt==""): | |
prompt="1girl, smile, brown bob+++ hair, brown eyes, sunflowers, sky" | |
neg_prompt=f"unaestheticXLv31, photo, deformed, realism, disfigured, low contrast, bad hand" | |
return prompt, neg_prompt | |
splited_prompt=prompt.replace(","," ").replace("_"," ").replace("+"," ").split(" ") | |
human_words=["1girl","girl","maid","maids","female","1woman","woman","girls","2girls","3girls","4girls","5girls","a couple of girls","women","1boy","boy","boys","a couple of boys","2boys","male","1man","1handsome","1bishounen","man","men","guy","guys"] | |
for word in human_words: | |
if( word in splited_prompt): | |
prompt=f"{prompt}" | |
neg_prompt=f"unaestheticXLv31,{neg_prompt}, photo, deformed, realism, disfigured, low contrast, bad hand" | |
return prompt, neg_prompt | |
animal_words=["cat","dog","bird","pigeon","rabbit","bunny","horse"] | |
for word in animal_words: | |
if( word in splited_prompt): | |
prompt=f"{prompt}, 4k, detailed" | |
neg_prompt=f"{neg_prompt},unaestheticXLv31" | |
return prompt, neg_prompt | |
background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"] | |
for word in background_words: | |
if( word in splited_prompt): | |
prompt=f"{prompt}, highly detailed" | |
neg_prompt=f"girl, deformed+++, {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text" | |
return prompt, neg_prompt | |
return prompt,neg_prompt | |
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator): | |
conditioning, pooled = compel(prompt) | |
neg_conditioning, neg_pooled = compel(neg_prompt) | |
result = pipe( | |
prompt_embeds=conditioning, | |
pooled_prompt_embeds=pooled, | |
negative_prompt_embeds=neg_conditioning, | |
negative_pooled_prompt_embeds=neg_pooled, | |
num_inference_steps = int(steps), | |
guidance_scale = guidance, | |
width = width, | |
height = height, | |
generator = generator | |
) | |
return result.images[0] | |
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
f""" | |
<div class="main-div"> | |
<div> | |
<h1>Emix 0.5 Lightning Demo</h1> | |
</div> | |
<p> | |
You can use new model: <a href="https://huggingface.co/spaces/aipicasso/emi-2-demo">Emi 2</a><br> | |
</p> | |
<p> | |
サンプル: そのままGenerateボタンを押してください。<br> | |
sample : Click "Generate" button without any prompts. | |
</p> | |
<p> | |
sample prompt1 : 1girl, cool+, smile--, colorful long hair, colorful eyes, stars, night, pastel color, transparent+ | |
</p> | |
<p> | |
sample prompt2 : 1boy, focus, wavy short hair, blue eyes, black shirt, white background, simple background | |
</p> | |
<p> | |
<a style="display:inline-block" href="https://huggingface.co/spaces/aipicasso/emi-latest-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> to say goodbye from waiting for the generating. | |
</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=55): | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]") | |
generate = gr.Button(value="Generate") | |
image_out = gr.Image() | |
error_output = gr.Markdown() | |
with gr.Column(scale=45): | |
with gr.Group(): | |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") | |
disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.") | |
with gr.Row(): | |
guidance = gr.Slider(label="Guidance scale", value=1.5, maximum=10, step=0.1) | |
steps = gr.Slider(label="Steps", value=8, minimum=1, maximum=20, step=1) | |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) | |
inputs = [prompt, guidance, steps, seed, neg_prompt, disable_auto_prompt_correction] | |
outputs = [image_out, error_output] | |
prompt.submit(inference, inputs=inputs, outputs=outputs) | |
generate.click(inference, inputs=inputs, outputs=outputs) | |
demo.queue() | |
demo.launch() |