|
|
|
import spaces |
|
import os |
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import torch |
|
from diffusers import StableDiffusion3Pipeline |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
device = "cuda" |
|
dtype = torch.float16 |
|
|
|
repo = "stabilityai/stable-diffusion-3.5-large" |
|
t2i = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.bfloat16, token=os.environ["TOKEN"]).to(device) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"microsoft/Phi-3-mini-4k-instruct", |
|
device_map="cuda", |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
token=os.environ["TOKEN"] |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", token=os.environ["TOKEN"]) |
|
upsampler = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
generation_args = { |
|
"max_new_tokens": 226, |
|
"return_full_text": False, |
|
"temperature": 0.7, |
|
"do_sample": True, |
|
"top_p": 0.95 |
|
} |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1344 |
|
|
|
@spaces.GPU |
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): |
|
messages = [ |
|
{"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「クールなアニメ風の女の子」"}, |
|
{"role": "assistant", "content": "An anime style illustration of a cool-looking teenage girl with an edgy, confident expression. She has piercing eyes, a slight smirk, and colorful hair that flows in the wind. "}, |
|
{"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「実写風の女子高生」"}, |
|
{"role": "assistant", "content": "A photorealistic image of a female high school student standing on a city street. She is wearing a traditional Japanese school uniform, consisting of a navy blue blazer, a white blouse, and a knee-length plaid skirt. "}, |
|
{"role": "user", "content": f"次のプロンプトを想像を膨らませて英語に翻訳してください。「{prompt}」" }, |
|
] |
|
output = upsampler(messages, **generation_args) |
|
upsampled_prompt=output[0]['generated_text'] |
|
print(upsampled_prompt) |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
image = t2i( |
|
prompt = upsampled_prompt, |
|
negative_prompt = negative_prompt, |
|
guidance_scale = guidance_scale, |
|
num_inference_steps = num_inference_steps, |
|
width = width, |
|
height = height, |
|
generator = generator |
|
).images[0] |
|
|
|
return image, seed, upsampled_prompt |
|
|
|
examples = [ |
|
"美味しい肉", |
|
"馬に乗った宇宙飛行士", |
|
"アニメ風の美少女", |
|
"女子高生の写真", |
|
"寿司でできた家に入っているコーギー", |
|
"バナナとアボカドが戦っている様子" |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 580px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f""" |
|
# 日本語が入力できる SD3.5 Large |
|
""") |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="プロンプト", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="作りたい画像の特徴を入力してください", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("実行", scale=0) |
|
|
|
result = gr.Image(label="結果", show_label=False) |
|
generated_prompt = gr.Textbox(label="生成に使ったプロンプト", show_label=False, interactive=False) |
|
|
|
with gr.Accordion("詳細設定", open=False): |
|
|
|
negative_prompt = gr.Text( |
|
label="ネガティブプロンプト", |
|
max_lines=1, |
|
placeholder="画像から排除したい要素を入力してください", |
|
) |
|
|
|
seed = gr.Slider( |
|
label="乱数のシード", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="ランダム生成", value=True) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="横", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="縦", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=64, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="プロンプトの忠実さ", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=3.5, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="推論回数", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
inputs = [prompt] |
|
) |
|
gr.on( |
|
triggers=[run_button.click, prompt.submit, negative_prompt.submit], |
|
fn = infer, |
|
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs = [result, seed, generated_prompt] |
|
) |
|
|
|
demo.launch() |