Spaces:
Running
on
Zero
Running
on
Zero
alfredplpl
commited on
Commit
·
5e70012
1
Parent(s):
3447cde
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
-
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
|
6 |
model_id = 'aipicasso/cool-japan-diffusion-2-1-1-beta'
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
|
11 |
pipe = StableDiffusionPipeline.from_pretrained(
|
12 |
model_id,
|
@@ -16,7 +18,11 @@ pipe = StableDiffusionPipeline.from_pretrained(
|
|
16 |
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
|
17 |
model_id,
|
18 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
19 |
-
scheduler=scheduler
|
|
|
|
|
|
|
|
|
20 |
|
21 |
if torch.cuda.is_available():
|
22 |
pipe = pipe.to("cuda")
|
@@ -26,21 +32,55 @@ def error_str(error, title="Error"):
|
|
26 |
return f"""#### {title}
|
27 |
{error}""" if error else ""
|
28 |
|
29 |
-
def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=False):
|
30 |
|
31 |
-
|
32 |
-
prompt = f"{prefix} {prompt}" if auto_prefix else prompt
|
33 |
|
|
|
|
|
34 |
try:
|
35 |
if img is not None:
|
36 |
-
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
|
37 |
else:
|
38 |
-
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
|
39 |
except Exception as e:
|
40 |
return None, error_str(e)
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
result = pipe(
|
45 |
prompt,
|
46 |
negative_prompt = neg_prompt,
|
@@ -52,8 +92,10 @@ def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
|
|
52 |
|
53 |
return result.images[0]
|
54 |
|
55 |
-
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
|
56 |
-
|
|
|
|
|
57 |
ratio = min(height / img.height, width / img.width)
|
58 |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
59 |
result = pipe_i2i(
|
@@ -63,8 +105,8 @@ def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height
|
|
63 |
num_inference_steps = int(steps),
|
64 |
strength = strength,
|
65 |
guidance_scale = guidance,
|
66 |
-
width = width,
|
67 |
-
height = height,
|
68 |
generator = generator)
|
69 |
|
70 |
return result.images[0]
|
@@ -76,14 +118,23 @@ with gr.Blocks(css=css) as demo:
|
|
76 |
f"""
|
77 |
<div class="main-div">
|
78 |
<div>
|
79 |
-
<h1>Cool Japan Diffusion 2
|
80 |
</div>
|
81 |
<p>
|
82 |
-
Demo for <a href="https://huggingface.co/aipicasso/cool-japan-diffusion-2-1-
|
83 |
{"Add the following tokens to your prompts for the model to work properly: <b>prefix</b>" if prefix else ""}
|
84 |
</p>
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
</div>
|
88 |
"""
|
89 |
)
|
@@ -102,11 +153,11 @@ with gr.Blocks(css=css) as demo:
|
|
102 |
with gr.Tab("Options"):
|
103 |
with gr.Group():
|
104 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
105 |
-
|
106 |
|
107 |
with gr.Row():
|
108 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
109 |
-
steps = gr.Slider(label="Steps", value=
|
110 |
|
111 |
with gr.Row():
|
112 |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
@@ -118,10 +169,9 @@ with gr.Blocks(css=css) as demo:
|
|
118 |
with gr.Group():
|
119 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
120 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
|
|
|
|
121 |
|
122 |
-
auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False)
|
123 |
-
|
124 |
-
inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix]
|
125 |
outputs = [image_out, error_output]
|
126 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
127 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
|
|
1 |
+
# Thank AK. https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/blob/main/app.py
|
2 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, EulerAncestralDiscreteScheduler
|
3 |
+
from transformers import CLIPFeatureExtractor
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
|
8 |
model_id = 'aipicasso/cool-japan-diffusion-2-1-1-beta'
|
9 |
+
|
10 |
+
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
11 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(model_id)
|
12 |
|
13 |
pipe = StableDiffusionPipeline.from_pretrained(
|
14 |
model_id,
|
|
|
18 |
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
|
19 |
model_id,
|
20 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
21 |
+
scheduler=scheduler,
|
22 |
+
requires_safety_checker=False,
|
23 |
+
safety_checker=None,
|
24 |
+
feature_extractor=feature_extractor
|
25 |
+
)
|
26 |
|
27 |
if torch.cuda.is_available():
|
28 |
pipe = pipe.to("cuda")
|
|
|
32 |
return f"""#### {title}
|
33 |
{error}""" if error else ""
|
34 |
|
|
|
35 |
|
36 |
+
def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", disable_auto_prompt_correction=False):
|
|
|
37 |
|
38 |
+
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
39 |
+
|
40 |
try:
|
41 |
if img is not None:
|
42 |
+
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator, disable_auto_prompt_correction), None
|
43 |
else:
|
44 |
+
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator, disable_auto_prompt_correction), None
|
45 |
except Exception as e:
|
46 |
return None, error_str(e)
|
47 |
+
def auto_prompt_correction(prompt_ui,neg_prompt_ui):
|
48 |
+
# auto prompt correction
|
49 |
+
prompt=str(prompt_ui)
|
50 |
+
neg_prompt=str(neg_prompt_ui)
|
51 |
+
prompt=prompt.lower()
|
52 |
+
neg_prompt=neg_prompt.lower()
|
53 |
+
if(prompt=="" and neg_prompt==""):
|
54 |
+
prompt="anime, a portrait of a girl, 4k, detailed"
|
55 |
+
neg_prompt=" (((deformed))), blurry, ((((bad anatomy)))), bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra_limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, ((mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 2d, 3d, cg, text"
|
56 |
+
|
57 |
+
splited_prompt=prompt.replace(","," ").replace("_"," ").split(" ")
|
58 |
+
splited_prompt=["girl" if p=="1girl" or p=="solo" else p for p in splited_prompt]
|
59 |
+
splited_prompt=["boy" if p=="1boy" else p for p in splited_prompt]
|
60 |
+
human_words=["girl","maid","female","woman","boy","male","man","guy"]
|
61 |
+
for word in human_words:
|
62 |
+
if( word in splited_prompt):
|
63 |
+
prompt=f"anime, {prompt}, 4k, detailed"
|
64 |
+
neg_prompt=" (((deformed))), blurry, ((((bad anatomy)))), bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra_limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, ((mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 2d, 3d, cg, text"
|
65 |
+
|
66 |
+
animal_words=["cat","dog","bird"]
|
67 |
+
for word in animal_words:
|
68 |
+
if( word in splited_prompt):
|
69 |
+
prompt=f"anime, a {word}, 4k, detailed"
|
70 |
+
neg_prompt=" (((deformed))), blurry, ((((bad anatomy)))), bad pupil, disfigured, poorly drawn face, mutation, mutated, (extra_limb), (ugly), (poorly drawn hands), bad hands, fused fingers, messy drawing, broken legs censor, low quality, ((mutated hands and fingers:1.5), (long body :1.3), (mutation, poorly drawn :1.2), ((bad eyes)), ui, error, missing fingers, fused fingers, one hand with more than 5 fingers, one hand with less than 5 fingers, one hand with more than 5 digit, one hand with less than 5 digit, extra digit, fewer digits, fused digit, missing digit, bad digit, liquid digit, long body, uncoordinated body, unnatural body, lowres, jpeg artifacts, 2d, 3d, cg, text"
|
71 |
+
|
72 |
+
background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo"]
|
73 |
+
for word in background_words:
|
74 |
+
if( word in splited_prompt):
|
75 |
+
prompt=f"anime, shinkai makoto, {word}, 4k, 8k, highly detailed"
|
76 |
+
neg_prompt=" (((deformed))), photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text"
|
77 |
+
|
78 |
+
return prompt,neg_prompt
|
79 |
+
|
80 |
+
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator,disable_auto_prompt_correction):
|
81 |
+
if(not disable_auto_prompt_correction):
|
82 |
+
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt)
|
83 |
+
|
84 |
result = pipe(
|
85 |
prompt,
|
86 |
negative_prompt = neg_prompt,
|
|
|
92 |
|
93 |
return result.images[0]
|
94 |
|
95 |
+
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator,disable_auto_prompt_correction):
|
96 |
+
if(not disable_auto_prompt_correction):
|
97 |
+
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt)
|
98 |
+
|
99 |
ratio = min(height / img.height, width / img.width)
|
100 |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
101 |
result = pipe_i2i(
|
|
|
105 |
num_inference_steps = int(steps),
|
106 |
strength = strength,
|
107 |
guidance_scale = guidance,
|
108 |
+
#width = width,
|
109 |
+
#height = height,
|
110 |
generator = generator)
|
111 |
|
112 |
return result.images[0]
|
|
|
118 |
f"""
|
119 |
<div class="main-div">
|
120 |
<div>
|
121 |
+
<h1>Cool Japan Diffusion 2.1.1 Beta</h1>
|
122 |
</div>
|
123 |
<p>
|
124 |
+
Demo for <a href="https://huggingface.co/aipicasso/cool-japan-diffusion-2-1-0">Cool Japan Diffusion 2 1 0</a> Stable Diffusion model.<br>
|
125 |
{"Add the following tokens to your prompts for the model to work properly: <b>prefix</b>" if prefix else ""}
|
126 |
</p>
|
127 |
+
<p>
|
128 |
+
sample prompt1 : girl
|
129 |
+
</p>
|
130 |
+
<p>
|
131 |
+
sample prompt2 : boy
|
132 |
+
</p>
|
133 |
+
<p>
|
134 |
+
<a href="https://alfredplpl.hatenablog.com/entry/2022/12/30/102636">日本語の取扱説明書</a>.
|
135 |
+
</p>
|
136 |
+
Running on {"<b>GPU 🔥</b>" if torch.cuda.is_available() else f"<b>CPU 🥶</b>. For faster inference it is recommended to <b>upgrade to GPU in <a href='https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0/settings'>Settings</a></b>"} after duplicating the space<br><br>
|
137 |
+
<a style="display:inline-block" href="https://huggingface.co/spaces/akhaliq/cool-japan-diffusion-2-1-0?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
138 |
</div>
|
139 |
"""
|
140 |
)
|
|
|
153 |
with gr.Tab("Options"):
|
154 |
with gr.Group():
|
155 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
156 |
+
disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.")
|
157 |
|
158 |
with gr.Row():
|
159 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
160 |
+
steps = gr.Slider(label="Steps", value=20, minimum=2, maximum=75, step=1)
|
161 |
|
162 |
with gr.Row():
|
163 |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
|
|
169 |
with gr.Group():
|
170 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
171 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
172 |
+
|
173 |
+
inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, disable_auto_prompt_correction]
|
174 |
|
|
|
|
|
|
|
175 |
outputs = [image_out, error_output]
|
176 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
177 |
generate.click(inference, inputs=inputs, outputs=outputs)
|