Spaces:
Runtime error
Runtime error
| from datasets import load_dataset | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments, pipeline, DataCollatorWithPadding | |
| from sklearn.metrics import accuracy_score, f1_score | |
| import torch | |
| import numpy as np | |
| import torch.nn.functional as F | |
| import matplotlib.pyplot as plt | |
| from typing import List | |
| from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| class TransformersSequenceClassifier: | |
| def __init__(self, | |
| model_output_dir, | |
| num_labels, | |
| tokenizer : AutoTokenizer, | |
| model_checkpoint="distilbert-base-uncased" | |
| ): | |
| self.model_output_dir = model_output_dir | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
| self.model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels).to(device) | |
| def tokenizer_batch(self, batch): | |
| return self.tokenizer(batch["inputs"], truncation=True) #, max_len=386 | |
| def tokenize_dataset(self, dataset): | |
| return dataset.map(self.tokenizer_batch, batched=True, remove_columns=('inputs', '__index_level_0__')) | |
| def train(self, train_dataset, eval_dataset, batch_size, epochs): | |
| data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer, padding='longest') | |
| training_args = TrainingArguments(output_dir=self.model_output_dir, | |
| num_train_epochs=epochs, | |
| learning_rate=2e-5, | |
| per_device_train_batch_size=batch_size, | |
| per_device_eval_batch_size=batch_size, | |
| weight_decay=0.01, | |
| evaluation_strategy="epoch", | |
| save_strategy='epoch', | |
| disable_tqdm=False, | |
| logging_steps=len(train_dataset)// batch_size, | |
| push_to_hub=True, | |
| load_best_model_at_end=True, | |
| log_level="error") | |
| self.trainer = Trainer( | |
| model=self.model, | |
| args=training_args, | |
| compute_metrics=self._compute_metrics, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| tokenizer=self.tokenizer, | |
| data_collator=data_collator | |
| ) | |
| self.trainer.train() | |
| self.trainer.push_to_hub(commit_message="Training completed!") | |
| def _compute_metrics(pred): | |
| labels = pred.label_ids | |
| preds = pred.predictions.argmax(-1) | |
| f1 = f1_score(labels, preds, average="weighted") | |
| acc = accuracy_score(labels, preds) | |
| return {"accuracy": acc, "f1": f1} | |
| def forward_pass_with_label(self, batch): | |
| # Place all input tensors on the same device as the model | |
| inputs = {k:v.to(device) for k,v in batch.items() | |
| if k in self.tokenizer.model_input_names} | |
| with torch.no_grad(): | |
| output = self.model(**inputs) | |
| pred_label = torch.argmax(output.logits, axis=-1) | |
| loss = F.cross_entropy(output.logits, batch["label"].to(device), | |
| reduction="none") | |
| # Place outputs on CPU for compatibility with other dataset columns | |
| return {"loss": loss.cpu().numpy(), | |
| "predicted_label": pred_label.cpu().numpy()} | |
| def compute_loss_per_pred(self, valid_dataset): | |
| # Compute loss values | |
| return valid_dataset.map(self.forward_pass_with_label, batched=True, batch_size=16) | |
| def plot_confusion_matrix(y_preds, y_true, labels): | |
| cm = confusion_matrix(y_true, y_preds, normalize="true") | |
| fig, ax = plt.subplots(figsize=(6, 6)) | |
| disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) | |
| disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False) | |
| plt.title("Normalized confusion matrix") | |
| plt.show() | |
| def predict_valid_data(self, valid_dataset): | |
| #trainer = Trainer(model=self.model) | |
| preds_output = self.trainer.predict(valid_dataset) | |
| print(preds_output.metrics) | |
| y_preds = np.argmax(preds_output.predictions, axis=1) | |
| return y_preds | |
| def predict_test_data(model_checkpoint, test_list: List[str]) -> List: | |
| pipe_classifier = pipeline("text-classification", model=model_checkpoint) | |
| preds = pipe_classifier(test_list, return_all_scores=True) | |
| return preds | |