|
|
import torch |
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
from Dataset import DataAdditiveManufacturing, DataThermoforming |
|
|
from model import NeuralNetwork |
|
|
|
|
|
DEVICE = torch.device('cpu') |
|
|
|
|
|
|
|
|
plt.rcParams.update({'font.size': 14, |
|
|
'figure.figsize': (10, 8), |
|
|
'lines.linewidth': 2, |
|
|
'lines.markersize': 6, |
|
|
'axes.grid': True, |
|
|
'axes.labelsize': 16, |
|
|
'legend.fontsize': 10, |
|
|
'xtick.labelsize': 14, |
|
|
'ytick.labelsize': 14, |
|
|
'figure.autolayout': True |
|
|
}) |
|
|
|
|
|
def set_seed(seed=42): |
|
|
np.random.seed(seed) |
|
|
torch.manual_seed(seed) |
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
def train_neural_network(model, inputs, outputs, optimizer, epochs=1000, lr_scheduler=None): |
|
|
model.train() |
|
|
for epoch in range(epochs): |
|
|
optimizer.zero_grad() |
|
|
predictions = model(inputs) |
|
|
loss = torch.mean(torch.square(predictions - outputs)) |
|
|
loss.backward() |
|
|
optimizer.step() |
|
|
|
|
|
if lr_scheduler: |
|
|
lr_scheduler.step() |
|
|
|
|
|
if epoch % 100 == 0: |
|
|
print(f'Epoch {epoch}, Loss: {loss.item()}, Learning Rate: {optimizer.param_groups[0]["lr"]}') |
|
|
|
|
|
def kfold_indices(n_samples, k=5, seed=42, shuffle=True): |
|
|
rng = np.random.default_rng(seed) |
|
|
indices = np.arange(n_samples) |
|
|
if shuffle: |
|
|
rng.shuffle(indices) |
|
|
fold_sizes = np.full(k, n_samples // k, dtype=int) |
|
|
fold_sizes[: n_samples % k] += 1 |
|
|
current = 0 |
|
|
folds = [] |
|
|
for fold_size in fold_sizes: |
|
|
start, stop = current, current + fold_size |
|
|
folds.append(indices[start:stop]) |
|
|
current = stop |
|
|
return folds |
|
|
|
|
|
def ridge_fit_predict(x_train, y_train, x_test, alpha=1.0): |
|
|
|
|
|
x_aug = np.concatenate([x_train, np.ones((x_train.shape[0], 1))], axis=1) |
|
|
xtx = x_aug.T @ x_aug |
|
|
reg = alpha * np.eye(xtx.shape[0], dtype=x_train.dtype) |
|
|
reg[-1, -1] = 0.0 |
|
|
w = np.linalg.solve(xtx + reg, x_aug.T @ y_train) |
|
|
x_test_aug = np.concatenate([x_test, np.ones((x_test.shape[0], 1))], axis=1) |
|
|
return x_test_aug @ w |
|
|
|
|
|
def kfold_ridge_baseline(inputs, outputs, k=5, alpha=1.0, seed=42): |
|
|
folds = kfold_indices(len(inputs), k=k, seed=seed, shuffle=True) |
|
|
mse_folds = [] |
|
|
r2_folds = [] |
|
|
for i in range(k): |
|
|
test_idx = folds[i] |
|
|
train_idx = np.concatenate([f for j, f in enumerate(folds) if j != i]) |
|
|
|
|
|
x_train = inputs[train_idx] |
|
|
y_train = outputs[train_idx] |
|
|
x_test = inputs[test_idx] |
|
|
y_test = outputs[test_idx] |
|
|
|
|
|
|
|
|
x_mean = x_train.mean(axis=0) |
|
|
x_std = x_train.std(axis=0) + 1e-8 |
|
|
y_mean = y_train.mean(axis=0) |
|
|
y_std = y_train.std(axis=0) + 1e-8 |
|
|
|
|
|
x_train_n = (x_train - x_mean) / x_std |
|
|
x_test_n = (x_test - x_mean) / x_std |
|
|
y_train_n = (y_train - y_mean) / y_std |
|
|
|
|
|
y_pred_n = ridge_fit_predict(x_train_n, y_train_n, x_test_n, alpha=alpha) |
|
|
y_pred = y_pred_n * y_std + y_mean |
|
|
|
|
|
mse = np.mean((y_pred - y_test) ** 2, axis=0) |
|
|
ss_res = np.sum((y_test - y_pred) ** 2, axis=0) |
|
|
ss_tot = np.sum((y_test - np.mean(y_test, axis=0)) ** 2, axis=0) |
|
|
r2 = 1 - ss_res / ss_tot |
|
|
mse_folds.append(mse) |
|
|
r2_folds.append(r2) |
|
|
|
|
|
mse_folds = np.stack(mse_folds, axis=0) |
|
|
r2_folds = np.stack(r2_folds, axis=0) |
|
|
print("Ridge k-fold CV (alpha=%.3g, k=%d)" % (alpha, k)) |
|
|
print("MSE mean:", np.mean(mse_folds, axis=0)) |
|
|
print("MSE std:", np.std(mse_folds, axis=0)) |
|
|
print("R2 mean:", np.mean(r2_folds, axis=0)) |
|
|
print("R2 std:", np.std(r2_folds, axis=0)) |
|
|
|
|
|
def main(): |
|
|
dataset = DataAdditiveManufacturing() |
|
|
inputs = dataset.get_input(normalize=False) |
|
|
outputs = dataset.get_output(normalize=False) |
|
|
|
|
|
idx_train = np.random.choice(len(inputs), size=int(0.95 * len(inputs)), replace=False) |
|
|
idx_test = np.setdiff1d(np.arange(len(inputs)), idx_train) |
|
|
|
|
|
|
|
|
x_train = inputs[idx_train] |
|
|
y_train = outputs[idx_train] |
|
|
x_test = inputs[idx_test] |
|
|
y_test = outputs[idx_test] |
|
|
|
|
|
x_mean = x_train.mean(axis=0) |
|
|
x_std = x_train.std(axis=0) + 1e-8 |
|
|
y_mean = y_train.mean(axis=0) |
|
|
y_std = y_train.std(axis=0) + 1e-8 |
|
|
|
|
|
x_train_n = (x_train - x_mean) / x_std |
|
|
x_test_n = (x_test - x_mean) / x_std |
|
|
y_train_n = (y_train - y_mean) / y_std |
|
|
y_test_n = (y_test - y_mean) / y_std |
|
|
|
|
|
inputs_train = torch.tensor(x_train_n, dtype=torch.float32).to(DEVICE) |
|
|
outputs_train = torch.tensor(y_train_n, dtype=torch.float32).to(DEVICE) |
|
|
|
|
|
inputs_test = torch.tensor(x_test_n, dtype=torch.float32).to(DEVICE) |
|
|
outputs_test = torch.tensor(y_test_n, dtype=torch.float32).to(DEVICE) |
|
|
|
|
|
layer_sizes = [inputs.shape[1], 64, 32, outputs.shape[1]] |
|
|
dropout_rate = 0.1 |
|
|
model = NeuralNetwork(layer_sizes, dropout_rate=dropout_rate, activation=torch.nn.ReLU).to(DEVICE) |
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-4) |
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2000, gamma=0.9) |
|
|
|
|
|
|
|
|
train_dataset = torch.utils.data.TensorDataset(inputs_train, outputs_train) |
|
|
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True) |
|
|
|
|
|
|
|
|
epochs = 5000 |
|
|
best_test_loss = float("inf") |
|
|
patience = 400 |
|
|
patience_left = patience |
|
|
for epoch in range(epochs): |
|
|
model.train() |
|
|
for inputs_batch, outputs_batch in train_loader: |
|
|
inputs_batch = inputs_batch.to(DEVICE) |
|
|
outputs_batch = outputs_batch.to(DEVICE) |
|
|
optimizer.zero_grad() |
|
|
predictions = model(inputs_batch) |
|
|
loss = torch.mean(torch.square(predictions - outputs_batch)) |
|
|
loss.backward() |
|
|
optimizer.step() |
|
|
|
|
|
if lr_scheduler: |
|
|
lr_scheduler.step() |
|
|
|
|
|
if epoch % 200 == 0: |
|
|
model.eval() |
|
|
with torch.no_grad(): |
|
|
train_pred = model(inputs_train, train=False) |
|
|
train_loss = torch.mean(torch.square(train_pred - outputs_train)) |
|
|
test_pred = model(inputs_test, train=False) |
|
|
test_loss = torch.mean(torch.square(test_pred - outputs_test)) |
|
|
print(f'Epoch {epoch}, Train Loss: {train_loss.item():.6f}, Test Loss: {test_loss.item():.6f}') |
|
|
if test_loss.item() < best_test_loss - 1e-6: |
|
|
best_test_loss = test_loss.item() |
|
|
patience_left = patience |
|
|
else: |
|
|
patience_left -= 1 |
|
|
if patience_left <= 0: |
|
|
print(f"Early stopping at epoch {epoch}") |
|
|
break |
|
|
|
|
|
|
|
|
predictions = model.predict(inputs_test) |
|
|
test_loss = torch.mean(torch.square(predictions - outputs_test)) |
|
|
print(f'Test Loss: {test_loss.item()}. Samples: {idx_test}') |
|
|
|
|
|
x = np.arange(0, len(idx_test)) |
|
|
|
|
|
outputs_test = outputs_test.cpu().numpy() * y_std + y_mean |
|
|
predictions = predictions.cpu().numpy() * y_std + y_mean |
|
|
|
|
|
|
|
|
plt.figure(figsize=(10, 6)) |
|
|
plt.plot(x, outputs_test[:, 0], color='b', linestyle='--', label='True Phi7_Change') |
|
|
plt.plot(x, predictions[:, 0], color='b', linestyle='-', label='Predicted Phi7_Change') |
|
|
plt.plot(x, outputs_test[:, 1], color='r', linestyle='--', label='True Phi8_Change') |
|
|
plt.plot(x, predictions[:, 1], color='r', linestyle='-', label='Predicted Phi8_Change') |
|
|
plt.plot(x, outputs_test[:, 2], color='g', linestyle='--', label='True Phi9_Change') |
|
|
plt.plot(x, predictions[:, 2], color='g', linestyle='-', label='Predicted Phi9_Change') |
|
|
|
|
|
plt.gca().xaxis.set_major_locator(plt.MaxNLocator(integer=True)) |
|
|
plt.xlabel('Sample Index') |
|
|
plt.xticks(ticks=range(len(idx_test)),labels=idx_test + 1) |
|
|
plt.ylabel('Angle Change (Degrees)') |
|
|
plt.title('Angle Change Prediction') |
|
|
plt.legend(loc='lower left') |
|
|
plt.savefig('fdm_simulation.png') |
|
|
|
|
|
|
|
|
plt.figure(figsize=(10, 6)) |
|
|
plt.plot(x, outputs_test[:, -1], color='m', linestyle='--', label='True Global_Max_Stress') |
|
|
plt.plot(x, predictions[:, -1], color='m', linestyle='-', label='Predicted Global_Max_Stress') |
|
|
plt.xlabel('Sample Index') |
|
|
plt.xticks(ticks=range(len(idx_test)),labels=idx_test + 1) |
|
|
plt.ylabel('Stress (MPa)') |
|
|
plt.title('Global Max Stress Prediction') |
|
|
plt.legend(loc='lower left') |
|
|
plt.savefig('fdm_stress_prediction.png') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mse = np.mean((predictions - outputs_test) ** 2, axis=0) |
|
|
|
|
|
print(f'Mean Squared Error for Phi7_Change: {mse[0]:.6f}, Phi8_Change: {mse[1]:.6f}, Phi9_Change: {mse[2]:.6f}, Global_Max_Stress: {mse[3]:.6f}') |
|
|
|
|
|
|
|
|
|
|
|
ss_ress = np.sum((outputs_test - predictions) ** 2, axis=0) |
|
|
ss_tots = np.sum((outputs_test - np.mean(outputs_test, axis=0)) ** 2, axis=0) |
|
|
r2_scores = 1 - ss_ress / ss_tots |
|
|
|
|
|
print(f'R² Score for Phi7_Change: {r2_scores[0]:.6f}, Phi8_Change: {r2_scores[1]:.6f}, Phi9_Change: {r2_scores[2]:.6f}, Global_Max_Stress: {r2_scores[3]:.6f}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_save_path = './model_fdm_ckpt.pth' |
|
|
model_config = {'layer_sizes': layer_sizes, |
|
|
'dropout_rate': dropout_rate |
|
|
} |
|
|
checkpoint = { |
|
|
'model_state_dict': model.state_dict(), |
|
|
'model_config': model_config |
|
|
} |
|
|
torch.save(checkpoint, model_save_path) |
|
|
|
|
|
def load_model(model_path): |
|
|
checkpoint = torch.load(model_path, map_location=DEVICE) |
|
|
model_config = checkpoint['model_config'] |
|
|
model = NeuralNetwork(model_config['layer_sizes'], dropout_rate=model_config['dropout_rate'], activation=torch.nn.ReLU).to(DEVICE) |
|
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
|
print(f"Model loaded from {model_path}") |
|
|
return model |
|
|
|
|
|
|
|
|
def inverse_design(material_base, fiber, fiber_vf, y_target, n_restarts=5, epochs=100, use_lbfgs=True, model=None, data=None): |
|
|
if model is None: |
|
|
model = load_model('./model_fdm_ckpt.pth').to(torch.device('cpu')) |
|
|
|
|
|
if data is None: |
|
|
data = DataAdditiveManufacturing() |
|
|
mat_type = data.material_base_map.get(material_base, 0.0) |
|
|
fiber_type = data.fiber_type_map.get(fiber, 0.0) |
|
|
build_direction = data.build_direction_map.get("Vertical", 0.0) |
|
|
y_target_norm = torch.tensor(data.normalize_output(y_target), dtype=torch.float32) |
|
|
y_target_tensor = torch.tensor(y_target, dtype=torch.float32) |
|
|
input_mean = torch.tensor(data.input_mean) |
|
|
input_std = torch.tensor(data.input_std) |
|
|
output_mean = torch.tensor(data.output_mean) |
|
|
output_std = torch.tensor(data.output_std) |
|
|
|
|
|
weights = torch.tensor([1.0, 1.0, 1.0, 0.001], dtype=torch.float32) |
|
|
bounds = torch.tensor([[100., 300.], [50., 300.], [10., 200.]], dtype=torch.float32) |
|
|
best = {"loss": float('inf'), "input": None, "output": None} |
|
|
|
|
|
for restart in range(n_restarts): |
|
|
z = torch.randn(3, requires_grad=True) |
|
|
|
|
|
if use_lbfgs: |
|
|
optimizer = torch.optim.LBFGS([z], lr=0.1, max_iter=epochs, line_search_fn="strong_wolfe") |
|
|
steps = 1 |
|
|
else: |
|
|
optimizer = torch.optim.Adam([z], lr=0.001) |
|
|
steps = epochs |
|
|
|
|
|
for step in range(steps): |
|
|
def closure(): |
|
|
var = bounds[:, 0] + (bounds[:, 1] - bounds[:, 0]) * torch.sigmoid(z) |
|
|
optimizer.zero_grad() |
|
|
input_raw = torch.cat([torch.tensor([mat_type, fiber_type, fiber_vf, build_direction]), var]).unsqueeze(0) |
|
|
input_norm = (input_raw - input_mean) / input_std |
|
|
output_pred = model(input_norm) |
|
|
output_pred = (output_pred * output_std) + output_mean |
|
|
loss = torch.sum(weights * (output_pred - y_target_tensor) ** 2) |
|
|
loss.backward() |
|
|
return loss |
|
|
|
|
|
if use_lbfgs: |
|
|
loss = optimizer.step(closure) |
|
|
else: |
|
|
loss = closure() |
|
|
optimizer.step() |
|
|
|
|
|
if (step + 1) % 200 == 0: |
|
|
print(f'Restart {restart + 1}, Step {step + 1}, Loss: {loss.item():.6f}, grad: {z.grad.norm().item():.6f}') |
|
|
|
|
|
with torch.no_grad(): |
|
|
var = bounds[:, 0] + (bounds[:, 1] - bounds[:, 0]) * torch.sigmoid(z) |
|
|
input_raw = torch.cat([torch.tensor([mat_type, fiber_type, fiber_vf, build_direction]), var]) |
|
|
input_norm = (input_raw - input_mean) / input_std |
|
|
output_pred = model(input_norm) |
|
|
output_pred = data.denormalize_output(output_pred.numpy()) |
|
|
final_loss = np.sum(weights.numpy() * (output_pred - y_target) ** 2).item() |
|
|
if final_loss < best["loss"]: |
|
|
best["loss"] = final_loss |
|
|
best["input"] = var.detach().cpu().numpy() |
|
|
best["output"] = output_pred |
|
|
|
|
|
return best |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
set_seed(51) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
best = inverse_design(material_base="HDPE", fiber="CF", fiber_vf=45.0, |
|
|
y_target=np.array([-0.22, 0.11, -0.004, 185.2]), n_restarts=20, epochs=100, use_lbfgs=True) |
|
|
print("Best design found:") |
|
|
print(f"Extruder_Temp: {best['input'][0]:.2f}, Velocity: {best['input'][1]:.2f}, Bed_Temp: {best['input'][2]:.2f}") |
|
|
print(f"Predicted Outputs: Phi7_Change: {best['output'][0]:.4f}, Phi8_Change: {best['output'][1]:.4f}, Phi9_Change: {best['output'][2]:.4f}, Global_Max_Stress: {best['output'][3]:.4f}") |
|
|
|