Commit
·
dcdef4a
1
Parent(s):
42d3d55
Fixed minor bug when returning predictions
Browse files
protac_degradation_predictor/protac_degradation_predictor.py
CHANGED
@@ -31,6 +31,7 @@ def get_protac_active_proba(
|
|
31 |
target_uniprot (str | List[str]): The Uniprot ID of the target protein.
|
32 |
cell_line (str | List[str]): The cell line identifier.
|
33 |
device (str): The device to run the model on.
|
|
|
34 |
|
35 |
Returns:
|
36 |
Dict[str, np.ndarray]: The predictions of the model.
|
@@ -98,8 +99,7 @@ def get_protac_active_proba(
|
|
98 |
preds = np.array(list(preds.values()))
|
99 |
mean_preds = np.mean(preds, axis=0)
|
100 |
# Return a single value if not list as input
|
101 |
-
|
102 |
-
means_preds = mean_preds if isinstance(protac_smiles, list) else mean_preds[0]
|
103 |
|
104 |
return {
|
105 |
'preds': preds,
|
|
|
31 |
target_uniprot (str | List[str]): The Uniprot ID of the target protein.
|
32 |
cell_line (str | List[str]): The cell line identifier.
|
33 |
device (str): The device to run the model on.
|
34 |
+
use_models_from_cv (bool): Whether to use the models from cross-validation.
|
35 |
|
36 |
Returns:
|
37 |
Dict[str, np.ndarray]: The predictions of the model.
|
|
|
99 |
preds = np.array(list(preds.values()))
|
100 |
mean_preds = np.mean(preds, axis=0)
|
101 |
# Return a single value if not list as input
|
102 |
+
mean_preds = mean_preds if isinstance(protac_smiles, list) else mean_preds[0]
|
|
|
103 |
|
104 |
return {
|
105 |
'preds': preds,
|