ribesstefano's picture
Fixed bug in studies and retrained models
eaba7e8
import os
import pkg_resources
import logging
from typing import List, Literal, Dict
from .pytorch_models import PROTAC_Model, load_model
from .data_utils import (
load_protein2embedding,
load_cell2embedding,
get_fingerprint,
load_curated_dataset,
)
from .config import config
import numpy as np
import torch
from torch import sigmoid
import xgboost as xgb
from sklearn.preprocessing import OneHotEncoder
from sklearn.feature_extraction.text import CountVectorizer
def get_protac_active_proba(
protac_smiles: str | List[str],
e3_ligase: str | List[str],
target_uniprot: str | List[str],
cell_line: str | List[str],
device: Literal['cpu', 'cuda'] = 'cpu',
use_models_from_cv: bool = False,
use_xgboost_models: bool = False,
study_type: Literal['standard', 'similarity', 'target'] = 'standard',
) -> Dict[str, np.ndarray]:
""" Predict the probability of a PROTAC being active.
Args:
protac_smiles (str | List[str]): The SMILES of the PROTAC.
e3_ligase (str | List[str]): The Uniprot ID of the E3 ligase.
target_uniprot (str | List[str]): The Uniprot ID of the target protein.
cell_line (str | List[str]): The cell line identifier.
device (str): The device to run the model on.
use_models_from_cv (bool): Whether to use the models from cross-validation.
use_xgb_models (bool): Whether to use the XGBoost models.
study_type (str): Use models trained on the specified study. Options are 'standard', 'similarity', 'target'.
Returns:
Dict[str, np.ndarray]: The predictions of the model. The dictionary contains the following: 'preds', 'mean', 'majority_vote'. The 'preds' key contains the predictions of all models with shape: (n_models, batch_size), 'mean' contains the mean prediction, and 'majority_vote' contains the majority vote.
"""
# Check that the study type is valid
if study_type not in ['standard', 'similarity', 'target']:
raise ValueError(f"Invalid study type: {study_type}. Options are 'standard', 'similarity', 'target'.")
# Check that the device is valid
if device not in ['cpu', 'cuda']:
raise ValueError(f"Invalid device: {device}. Options are 'cpu', 'cuda'.")
# Check that if any the models input is a list, all inputs are lists
model_inputs = [protac_smiles, e3_ligase, target_uniprot, cell_line]
if any(isinstance(i, list) for i in model_inputs):
if not all(isinstance(i, list) for i in model_inputs):
raise ValueError("All model inputs must be lists if one of the inputs is a list.")
# Load all required models in pkg_resources
device = torch.device(device)
models = {}
model_to_load = 'best_model' if not use_models_from_cv else 'cv_model'
for model_filename in pkg_resources.resource_listdir(__name__, 'models'):
if model_to_load not in model_filename:
continue
if study_type not in model_filename:
continue
if not use_xgboost_models:
if 'xgboost' not in model_filename:
ckpt_path = pkg_resources.resource_filename(__name__, f'models/{model_filename}')
models[ckpt_path] = load_model(ckpt_path).to(device)
else:
if 'xgboost' in model_filename:
json_path = pkg_resources.resource_filename(__name__, f'models/{model_filename}')
models[json_path] = xgb.Booster()
models[json_path].load_model(json_path)
protein2embedding = load_protein2embedding()
cell2embedding = load_cell2embedding()
# Get the dimension of the embeddings from the first np.array in the dictionary
protein_embedding_size = next(iter(protein2embedding.values())).shape[0]
cell_embedding_size = next(iter(cell2embedding.values())).shape[0]
# Setup default embeddings
default_protein_emb = np.zeros(protein_embedding_size)
default_cell_emb = np.zeros(cell_embedding_size)
# Check if any model name contains cellsonehot, if so, get onehot encoding
cell2onehot = None
if any('cellsonehot' in model_name for model_name in models.keys()):
onehotenc = OneHotEncoder(sparse_output=False)
cell_embeddings = onehotenc.fit_transform(
np.array(list(cell2embedding.keys())).reshape(-1, 1)
)
cell2onehot = {k: v for k, v in zip(cell2embedding.keys(), cell_embeddings)}
# Check if any of the model names contain aminoacidcnt, if so, get the CountVectorizer
protein2aacnt = None
if any('aminoacidcnt' in model_name for model_name in models.keys()):
# Create a new protein2embedding dictionary with amino acid sequence
protac_df = load_curated_dataset()
# Create the dictionary mapping 'Uniprot' to 'POI Sequence'
protein2aacnt = protac_df.set_index('Uniprot')['POI Sequence'].to_dict()
# Create the dictionary mapping 'E3 Ligase Uniprot' to 'E3 Ligase Sequence'
e32seq = protac_df.set_index('E3 Ligase Uniprot')['E3 Ligase Sequence'].to_dict()
# Merge the two dictionaries into a new protein2aacnt dictionary
protein2aacnt.update(e32seq)
# Get count vectorized embeddings for proteins
# NOTE: Check that the protein2aacnt is a dictionary of strings
if not all(isinstance(k, str) for k in protein2aacnt.keys()):
raise ValueError("All keys in `protein2aacnt` must be strings.")
countvec = CountVectorizer(ngram_range=(1, 1), analyzer='char')
protein_embeddings = countvec.fit_transform(
list(protein2aacnt.keys())
).toarray()
protein2aacnt = {k: v for k, v in zip(protein2aacnt.keys(), protein_embeddings)}
# Convert the E3 ligase to Uniprot ID
if isinstance(e3_ligase, list):
e3_ligase_uniprot = [config.e3_ligase2uniprot.get(e3, '') for e3 in e3_ligase]
else:
e3_ligase_uniprot = config.e3_ligase2uniprot.get(e3_ligase, '')
# Get the embeddings for the PROTAC, E3 ligase, target protein, and cell line
# Check if the input is a list or a single string, in the latter case,
# convert to a list to create a batch of size 1, len(list) otherwise.
if isinstance(protac_smiles, list):
# TODO: Add warning on missing entries?
smiles_emb = [get_fingerprint(s) for s in protac_smiles]
cell_emb = [cell2embedding.get(c, default_cell_emb) for c in cell_line]
e3_emb = [protein2embedding.get(e3, default_protein_emb) for e3 in e3_ligase_uniprot]
poi_emb = [protein2embedding.get(t, default_protein_emb) for t in target_uniprot]
# Convert to one-hot encoded cell embeddings if necessary
if cell2onehot is not None:
cell_onehot = [cell2onehot.get(c, default_cell_emb) for c in cell_line]
# Convert to amino acid count embeddings if necessary
if protein2aacnt is not None:
poi_aacnt = [protein2aacnt.get(t, default_protein_emb) for t in target_uniprot]
e3_aacnt = [protein2aacnt.get(e3, default_protein_emb) for e3 in e3_ligase_uniprot]
else:
if e3_ligase not in config.e3_ligase2uniprot:
available_e3_ligases = ', '.join(list(config.e3_ligase2uniprot.keys()))
logging.warning(f"The E3 ligase {e3_ligase} is not in the database. Using the default E3 ligase. Available E3 ligases are: {available_e3_ligases}")
if target_uniprot not in protein2embedding:
logging.warning(f"The target protein {target_uniprot} is not in the database. Using the default target protein.")
if cell_line not in cell2embedding:
logging.warning(f"The cell line {cell_line} is not in the database. Using the default cell line.")
smiles_emb = [get_fingerprint(protac_smiles)]
cell_emb = [cell2embedding.get(cell_line, default_cell_emb)]
poi_emb = [protein2embedding.get(target_uniprot, default_protein_emb)]
e3_emb = [protein2embedding.get(e3_ligase_uniprot, default_protein_emb)]
# Convert to one-hot encoded cell embeddings if necessary
if cell2onehot is not None:
cell_onehot = [cell2onehot.get(cell_line, default_cell_emb)]
# Convert to amino acid count embeddings if necessary
if protein2aacnt is not None:
poi_aacnt = [protein2aacnt.get(target_uniprot, default_protein_emb)]
e3_aacnt = [protein2aacnt.get(e3_ligase_uniprot, default_protein_emb)]
# Convert to numpy arrays
smiles_emb = np.array(smiles_emb)
cell_emb = np.array(cell_emb)
poi_emb = np.array(poi_emb)
e3_emb = np.array(e3_emb)
if cell2onehot is not None:
cell_onehot = np.array(cell_onehot)
if protein2aacnt is not None:
poi_aacnt = np.array(poi_aacnt)
e3_aacnt = np.array(e3_aacnt)
# Convert to torch tensors
if not use_xgboost_models:
smiles_emb = torch.tensor(smiles_emb).float().to(device)
cell_emb = torch.tensor(cell_emb).to(device)
poi_emb = torch.tensor(poi_emb).to(device)
e3_emb = torch.tensor(e3_emb).to(device)
if cell2onehot is not None:
cell_onehot = torch.tensor(cell_onehot).float().to(device)
if protein2aacnt is not None:
poi_aacnt = torch.tensor(poi_aacnt).float().to(device)
e3_aacnt = torch.tensor(e3_aacnt).float().to(device)
# Average the predictions of all models
preds = {}
for ckpt_path, model in models.items():
# Get the last part of the path
ckpt_path = os.path.basename(ckpt_path)
if not use_xgboost_models:
pred = model(
poi_emb if 'aminoacidcnt' not in ckpt_path else poi_aacnt,
e3_emb if 'aminoacidcnt' not in ckpt_path else e3_aacnt,
cell_emb if 'cellsonehot' not in ckpt_path else cell_onehot,
smiles_emb,
prescaled_embeddings=False, # Normalization performed by the model
)
preds[ckpt_path] = sigmoid(pred).detach().cpu().numpy().flatten()
else:
X = np.hstack([smiles_emb, poi_emb, e3_emb, cell_emb])
pred = model.inplace_predict(X)
preds[ckpt_path] = pred
# NOTE: The predictions array has shape: (n_models, batch_size)
preds = np.array(list(preds.values()))
mean_preds = np.mean(preds, axis=0)
# Return a single value if not list as input
mean_preds = mean_preds if isinstance(protac_smiles, list) else mean_preds[0]
return {
'preds': preds,
'mean': mean_preds,
'majority_vote': mean_preds > 0.5,
}
def is_protac_active(
protac_smiles: str | List[str],
e3_ligase: str | List[str],
target_uniprot: str | List[str],
cell_line: str | List[str],
device: str = 'cpu',
proba_threshold: float = 0.5,
use_majority_vote: bool = False,
use_models_from_cv: bool = False,
use_xgboost_models: bool = False,
study_type: Literal['standard', 'similarity', 'target'] = 'standard',
) -> bool:
""" Predict whether a PROTAC is active or not.
Args:
protac_smiles (str): The SMILES of the PROTAC.
e3_ligase (str): The Uniprot ID of the E3 ligase.
target_uniprot (str): The Uniprot ID of the target protein.
cell_line (str): The cell line identifier.
device (str): The device to run the model on.
proba_threshold (float): The probability threshold.
use_majority_vote (bool): Whether to use the majority vote.
use_models_from_cv (bool): Whether to use the models from cross-validation.
use_xgboost_models (bool): Whether to use the XGBoost models.
study_type (str): Use models trained on the specified study. Options are 'standard', 'similarity', 'target'.
Returns:
bool: Whether the PROTAC is active or not.
"""
pred = get_protac_active_proba(
protac_smiles,
e3_ligase,
target_uniprot,
cell_line,
device,
use_models_from_cv,
use_xgboost_models,
study_type,
)
if use_majority_vote:
return pred['majority_vote']
else:
return pred['mean'] > proba_threshold
def get_protac_embedding(
protac_smiles: str | List[str],
e3_ligase: str | List[str],
target_uniprot: str | List[str],
cell_line: str | List[str],
device: Literal['cpu', 'cuda'] = 'cpu',
use_models_from_cv: bool = False,
study_type: Literal['standard', 'similarity', 'target'] = 'standard',
) -> Dict[str, np.ndarray]:
""" Get the embeddings of a PROTAC or a list of PROTACs.
Args:
protac_smiles (str | List[str]): The SMILES of the PROTAC.
e3_ligase (str | List[str]): The Uniprot ID of the E3 ligase.
target_uniprot (str | List[str]): The Uniprot ID of the target protein.
cell_line (str | List[str]): The cell line identifier.
device (str): The device to run the model on.
use_models_from_cv (bool): Whether to use the models from cross-validation.
study_type (str): Use models trained on the specified study. Options are 'standard', 'similarity', 'target'.
Returns:
Dict[str, np.ndarray]: The embeddings of the given PROTAC. Each key is the name of the model and the value is the embedding, of shape: (batch_size, model_hidden_size). NOTE: Each model has its own hidden size, so the embeddings might have different dimensions.
"""
# Check that the study type is valid
if study_type not in ['standard', 'similarity', 'target']:
raise ValueError(f"Invalid study type: {study_type}. Options are 'standard', 'similarity', 'target'.")
# Check that the device is valid
if device not in ['cpu', 'cuda']:
raise ValueError(f"Invalid device: {device}. Options are 'cpu', 'cuda'.")
# Check that if any the models input is a list, all inputs are lists
model_inputs = [protac_smiles, e3_ligase, target_uniprot, cell_line]
if any(isinstance(i, list) for i in model_inputs):
if not all(isinstance(i, list) for i in model_inputs):
raise ValueError("All model inputs must be lists if one of the inputs is a list.")
# Load all required models in pkg_resources
device = torch.device(device)
models = {}
model_to_load = 'best_model' if not use_models_from_cv else 'cv_model'
for model_filename in pkg_resources.resource_listdir(__name__, 'models'):
if model_to_load not in model_filename:
continue
if study_type not in model_filename:
continue
if 'xgboost' not in model_filename:
ckpt_path = pkg_resources.resource_filename(__name__, f'models/{model_filename}')
models[ckpt_path] = load_model(ckpt_path).to(device)
protein2embedding = load_protein2embedding()
cell2embedding = load_cell2embedding()
# Get the dimension of the embeddings from the first np.array in the dictionary
protein_embedding_size = next(iter(protein2embedding.values())).shape[0]
cell_embedding_size = next(iter(cell2embedding.values())).shape[0]
# Setup default embeddings
default_protein_emb = np.zeros(protein_embedding_size)
default_cell_emb = np.zeros(cell_embedding_size)
# Check if any model name contains cellsonehot, if so, get onehot encoding
cell2onehot = None
if any('cellsonehot' in model_name for model_name in models.keys()):
onehotenc = OneHotEncoder(sparse_output=False)
cell_embeddings = onehotenc.fit_transform(
np.array(list(cell2embedding.keys())).reshape(-1, 1)
)
cell2onehot = {k: v for k, v in zip(cell2embedding.keys(), cell_embeddings)}
# Check if any of the model names contain aminoacidcnt, if so, get the CountVectorizer
protein2aacnt = None
if any('aminoacidcnt' in model_name for model_name in models.keys()):
# Create a new protein2embedding dictionary with amino acid sequence
protac_df = load_curated_dataset()
# Create the dictionary mapping 'Uniprot' to 'POI Sequence'
protein2aacnt = protac_df.set_index('Uniprot')['POI Sequence'].to_dict()
# Create the dictionary mapping 'E3 Ligase Uniprot' to 'E3 Ligase Sequence'
e32seq = protac_df.set_index('E3 Ligase Uniprot')['E3 Ligase Sequence'].to_dict()
# Merge the two dictionaries into a new protein2aacnt dictionary
protein2aacnt.update(e32seq)
# Get count vectorized embeddings for proteins
# NOTE: Check that the protein2aacnt is a dictionary of strings
if not all(isinstance(k, str) for k in protein2aacnt.keys()):
raise ValueError("All keys in `protein2aacnt` must be strings.")
countvec = CountVectorizer(ngram_range=(1, 1), analyzer='char')
protein_embeddings = countvec.fit_transform(
list(protein2aacnt.keys())
).toarray()
protein2aacnt = {k: v for k, v in zip(protein2aacnt.keys(), protein_embeddings)}
# Convert the E3 ligase to Uniprot ID
if isinstance(e3_ligase, list):
e3_ligase_uniprot = [config.e3_ligase2uniprot.get(e3, '') for e3 in e3_ligase]
else:
e3_ligase_uniprot = config.e3_ligase2uniprot.get(e3_ligase, '')
# Get the embeddings for the PROTAC, E3 ligase, target protein, and cell line
# Check if the input is a list or a single string, in the latter case,
# convert to a list to create a batch of size 1, len(list) otherwise.
if isinstance(protac_smiles, list):
# TODO: Add warning on missing entries?
smiles_emb = [get_fingerprint(s) for s in protac_smiles]
cell_emb = [cell2embedding.get(c, default_cell_emb) for c in cell_line]
e3_emb = [protein2embedding.get(e3, default_protein_emb) for e3 in e3_ligase_uniprot]
poi_emb = [protein2embedding.get(t, default_protein_emb) for t in target_uniprot]
# Convert to one-hot encoded cell embeddings if necessary
if cell2onehot is not None:
cell_onehot = [cell2onehot.get(c, default_cell_emb) for c in cell_line]
# Convert to amino acid count embeddings if necessary
if protein2aacnt is not None:
poi_aacnt = [protein2aacnt.get(t, default_protein_emb) for t in target_uniprot]
e3_aacnt = [protein2aacnt.get(e3, default_protein_emb) for e3 in e3_ligase_uniprot]
else:
if e3_ligase not in config.e3_ligase2uniprot:
available_e3_ligases = ', '.join(list(config.e3_ligase2uniprot.keys()))
logging.warning(f"The E3 ligase {e3_ligase} is not in the database. Using the default E3 ligase. Available E3 ligases are: {available_e3_ligases}")
if target_uniprot not in protein2embedding:
logging.warning(f"The target protein {target_uniprot} is not in the database. Using the default target protein.")
if cell_line not in cell2embedding:
logging.warning(f"The cell line {cell_line} is not in the database. Using the default cell line.")
smiles_emb = [get_fingerprint(protac_smiles)]
cell_emb = [cell2embedding.get(cell_line, default_cell_emb)]
poi_emb = [protein2embedding.get(target_uniprot, default_protein_emb)]
e3_emb = [protein2embedding.get(e3_ligase_uniprot, default_protein_emb)]
# Convert to one-hot encoded cell embeddings if necessary
if cell2onehot is not None:
cell_onehot = [cell2onehot.get(cell_line, default_cell_emb)]
# Convert to amino acid count embeddings if necessary
if protein2aacnt is not None:
poi_aacnt = [protein2aacnt.get(target_uniprot, default_protein_emb)]
e3_aacnt = [protein2aacnt.get(e3_ligase_uniprot, default_protein_emb)]
# Convert to numpy arrays
smiles_emb = np.array(smiles_emb)
cell_emb = np.array(cell_emb)
poi_emb = np.array(poi_emb)
e3_emb = np.array(e3_emb)
if cell2onehot is not None:
cell_onehot = np.array(cell_onehot)
if protein2aacnt is not None:
poi_aacnt = np.array(poi_aacnt)
e3_aacnt = np.array(e3_aacnt)
# Convert to torch tensors
smiles_emb = torch.tensor(smiles_emb).float().to(device)
cell_emb = torch.tensor(cell_emb).to(device)
poi_emb = torch.tensor(poi_emb).to(device)
e3_emb = torch.tensor(e3_emb).to(device)
if cell2onehot is not None:
cell_onehot = torch.tensor(cell_onehot).float().to(device)
if protein2aacnt is not None:
poi_aacnt = torch.tensor(poi_aacnt).float().to(device)
e3_aacnt = torch.tensor(e3_aacnt).float().to(device)
# Average the predictions of all models
protac_embs = {}
for ckpt_path, model in models.items():
# Get the last part of the path
ckpt_path = os.path.basename(ckpt_path)
_, protac_emb = model(
poi_emb if 'aminoacidcnt' not in ckpt_path else poi_aacnt,
e3_emb if 'aminoacidcnt' not in ckpt_path else e3_aacnt,
cell_emb if 'cellsonehot' not in ckpt_path else cell_onehot,
smiles_emb,
prescaled_embeddings=False, # Normalization performed by the model
return_embeddings=True,
)
protac_embs[ckpt_path] = protac_emb.detach().cpu().numpy()
return protac_embs