aikanava commited on
Commit
2baa578
Β·
1 Parent(s): 3d623ec

upload files

Browse files
Files changed (3) hide show
  1. app.py +121 -0
  2. requirements.txt +5 -0
  3. winequality-red.csv +0 -0
app.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+
3
+ import streamlit as st
4
+ import pandas as pd
5
+ import numpy as np
6
+ from sklearn.decomposition import PCA
7
+ from sklearn.preprocessing import StandardScaler
8
+ import matplotlib.pyplot as plt
9
+ import seaborn as sns
10
+
11
+ # Streamlit page setup
12
+ st.set_page_config(page_title="PCA Explorer - Wine Quality", page_icon="🍷", layout="wide")
13
+
14
+ # Title and short description
15
+ st.title("🍷 Principal Component Analysis (PCA) on Wine Quality Dataset")
16
+ st.write("""
17
+ This app demonstrates **Principal Component Analysis (PCA)** for dimensionality reduction and visualization of the **Wine Quality Dataset**.
18
+ """)
19
+
20
+ # Load Wine Quality dataset (local file)
21
+ @st.cache_data
22
+ def load_data():
23
+ data = pd.read_csv("winequality-red.csv") # Make sure the dataset is named correctly
24
+ return data
25
+
26
+ data = load_data()
27
+
28
+ # Sidebar settings
29
+ st.sidebar.header("Settings")
30
+ n_components = st.sidebar.slider("Select number of PCA components", 2, min(data.shape[1], 10), 2)
31
+
32
+ # Features selection (all numeric columns except 'quality')
33
+ features = data.drop(columns=['quality'])
34
+
35
+ # Standardize the data
36
+ scaler = StandardScaler()
37
+ scaled_features = scaler.fit_transform(features)
38
+
39
+ # Perform PCA
40
+ pca = PCA(n_components=n_components)
41
+ principal_components = pca.fit_transform(scaled_features)
42
+
43
+ # Create DataFrame for PCA result
44
+ pca_df = pd.DataFrame(
45
+ data=principal_components,
46
+ columns=[f"PC{i+1}" for i in range(n_components)]
47
+ )
48
+
49
+ # Add the 'quality' column to the PCA DataFrame
50
+ pca_df['Quality'] = data['quality']
51
+
52
+ # Tabs
53
+ tab1, tab2, tab3, tab4 = st.tabs(["πŸ“„ Raw Dataset", "πŸ“‰ PCA Scatter Plot", "πŸ“ˆ Explained Variance", "πŸ“₯ Download Reduced Dataset"])
54
+
55
+ with tab1:
56
+ st.subheader("πŸ“„ Raw Dataset")
57
+ st.dataframe(data)
58
+
59
+ with tab2:
60
+ st.subheader("πŸ“‰ PCA Scatter Plot")
61
+ if n_components >= 2:
62
+ fig, ax = plt.subplots()
63
+ sns.scatterplot(
64
+ x="PC1",
65
+ y="PC2",
66
+ data=pca_df,
67
+ hue="Quality",
68
+ palette="viridis",
69
+ s=70,
70
+ edgecolor="black",
71
+ alpha=0.7
72
+ )
73
+ ax.set_xlabel("Principal Component 1")
74
+ ax.set_ylabel("Principal Component 2")
75
+ ax.set_title("PCA - First Two Components")
76
+ st.pyplot(fig)
77
+
78
+ st.write("""
79
+ The scatter plot above shows how the wine samples are distributed in the space of the first two principal components.
80
+ Points are colored based on their **wine quality**, which ranges from 3 (poor) to 8 (excellent).
81
+ - **Clusters**: Notice how wines of similar quality tend to group together in the plot.
82
+ - **Separation**: High-quality wines (higher quality scores) tend to be more spread out, while lower-quality wines are often more tightly clustered.
83
+ """)
84
+
85
+ else:
86
+ st.warning("Please select at least 2 components to plot a scatter plot.")
87
+
88
+ with tab3:
89
+ st.subheader("πŸ“ˆ Explained Variance Ratio")
90
+ exp_var = pca.explained_variance_ratio_
91
+ fig2, ax2 = plt.subplots()
92
+ sns.barplot(x=[f"PC{i+1}" for i in range(n_components)], y=exp_var, color="skyblue", ax=ax2)
93
+ ax2.set_ylabel('Explained Variance Ratio')
94
+ ax2.set_xlabel('Principal Components')
95
+ ax2.set_title('Variance Explained by Each Principal Component')
96
+ st.pyplot(fig2)
97
+
98
+ st.markdown(f"**Total Variance Explained:** {np.sum(exp_var):.2f}")
99
+ st.write("""
100
+ The bar plot shows the **explained variance ratio** of each principal component.
101
+ - **Higher variance** means that component carries more information.
102
+ - In this case, the first few components explain the majority of the variance in the dataset, with later components contributing less.
103
+ - By selecting fewer components, we reduce dimensionality but still retain most of the data's information.
104
+ """)
105
+
106
+ with tab4:
107
+ st.subheader("πŸ“₯ Download Reduced Dataset")
108
+ st.write("You can download the PCA-reduced dataset as a CSV file.")
109
+
110
+ # Create a CSV for the PCA-reduced data
111
+ pca_reduced = pca_df.to_csv(index=False)
112
+ st.download_button(
113
+ label="Download PCA Reduced Data",
114
+ data=pca_reduced,
115
+ file_name="pca_reduced_wine_quality.csv",
116
+ mime="text/csv"
117
+ )
118
+
119
+ # Footer
120
+ st.markdown("---")
121
+ st.caption("Made with ❀️ using Streamlit")
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ scikit-learn
4
+ seaborn
5
+ matplotlib
winequality-red.csv ADDED
The diff for this file is too large to render. See raw diff