aihuashanying commited on
Commit
69a1e25
·
1 Parent(s): 6958a6e

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +475 -0
app.py ADDED
@@ -0,0 +1,475 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from langchain_community.document_loaders import TextLoader, DirectoryLoader
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain_community.vectorstores import FAISS
6
+ from langchain_openai import ChatOpenAI
7
+ from langchain.prompts import PromptTemplate
8
+ import numpy as np
9
+ import faiss
10
+ from collections import deque
11
+ from langchain_core.embeddings import Embeddings
12
+ import threading
13
+ import queue
14
+ from langchain_core.messages import HumanMessage, AIMessage
15
+ from sentence_transformers import SentenceTransformer
16
+ import pickle
17
+ import torch
18
+ from langchain_core.documents import Document
19
+ import time
20
+ from tqdm import tqdm
21
+ from rank_bm25 import BM25Okapi # 确保正确导入
22
+ import jieba # 引入中文分词库
23
+
24
+ # 获取 OPENROUTER_API_KEY 环境变量
25
+ os.environ["OPENROUTER_API_KEY"] = os.getenv("OPENROUTER_API_KEY", "")
26
+ if not os.environ["OPENROUTER_API_KEY"]:
27
+ raise ValueError("OPENROUTER_API_KEY 未设置,请在环境变量中配置或在 .env 文件中添加")
28
+
29
+ # 自定义 SentenceTransformerEmbeddings 类(使用 BAAI/bge-m3 模型,适配 CPU)
30
+ class SentenceTransformerEmbeddings(Embeddings):
31
+ def __init__(self, model_name="BAAI/bge-m3"):
32
+ self.model = SentenceTransformer(model_name, device="cpu")
33
+ self.batch_size = 64
34
+ self.query_cache = {}
35
+
36
+ def embed_documents(self, texts):
37
+ total_chunks = len(texts)
38
+ embeddings_list = []
39
+ batch_size = 1000
40
+
41
+ print(f"开始生成嵌入(共 {total_chunks} 个分片,每批 {batch_size} 个分片)")
42
+ start_time = time.time()
43
+ with torch.no_grad():
44
+ for i in tqdm(range(0, total_chunks, batch_size), desc="生成嵌入进度"):
45
+ batch_start = i
46
+ batch_end = min(i + batch_size, total_chunks)
47
+ batch_texts = [text.page_content for text in texts[batch_start:batch_end]]
48
+
49
+ batch_start_time = time.time()
50
+ batch_emb = self.model.encode(
51
+ batch_texts,
52
+ normalize_embeddings=True,
53
+ batch_size=self.batch_size,
54
+ show_progress_bar=True
55
+ )
56
+ batch_time = time.time() - batch_start_time
57
+
58
+ if isinstance(batch_emb, torch.Tensor):
59
+ embeddings_list.append(batch_emb.cpu().numpy())
60
+ else:
61
+ embeddings_list.append(batch_emb)
62
+ print(f"完成批次 {i//batch_size + 1}/{total_chunks//batch_size + 1},处理了 {batch_end - batch_start} 个分片,耗时 {batch_time:.2f} 秒")
63
+
64
+ embeddings_array = np.vstack(embeddings_list)
65
+ total_time = time.time() - start_time
66
+ print(f"嵌入生成完成,总耗时 {total_time:.2f} 秒,平均每 1000 个分片耗时 {total_time/total_chunks*1000:.2f} 秒")
67
+
68
+ np.save("embeddings.npy", embeddings_array)
69
+ return embeddings_array
70
+
71
+ def embed_query(self, text):
72
+ if text in self.query_cache:
73
+ return self.query_cache[text]
74
+ with torch.no_grad():
75
+ emb = self.model.encode([text], normalize_embeddings=True, batch_size=1, show_progress_bar=False)[0]
76
+ self.query_cache[text] = emb
77
+ return emb
78
+
79
+ # 预计算分词结果
80
+ def preprocess_corpus(documents):
81
+ if not os.path.exists("tokenized_corpus.pkl"):
82
+ tokenized_corpus = [list(jieba.cut_for_search(doc.page_content)) for doc in documents] # 使用 cut_for_search 提高精度
83
+ with open("tokenized_corpus.pkl", "wb") as f:
84
+ pickle.dump(tokenized_corpus, f)
85
+ print(f"预计算分词结果,保存到 tokenized_corpus.pkl,共 {len(tokenized_corpus)} 个分片")
86
+ else:
87
+ with open("tokenized_corpus.pkl", "rb") as f:
88
+ tokenized_corpus = pickle.load(f)
89
+ print(f"加载已有分词结果,共 {len(tokenized_corpus)} 个分片")
90
+ return tokenized_corpus
91
+
92
+ # 按权重混合检索函数(优化得分和多样性)
93
+ def hybrid_retrieval(query, vector_store, documents, tokenized_corpus, top_n=15, bm25_weight=0.2, semantic_weight=0.8):
94
+ try:
95
+ if not documents or not query:
96
+ raise ValueError("查询或文档列表为空")
97
+
98
+ # 创建文档到 ID 的映射
99
+ doc_to_id = {id(doc): str(i) for i, doc in enumerate(documents)}
100
+ id_to_doc = {str(i): doc for i, doc in enumerate(documents)}
101
+
102
+ # 验证索引与文档一致性
103
+ index_ids = set(vector_store.index_to_docstore_id.values())
104
+ doc_ids = set(str(i) for i in range(len(documents)))
105
+ if index_ids != doc_ids:
106
+ print("警告:索引与文档 ID 不匹配!index_ids:", index_ids, "doc_ids:", doc_ids)
107
+
108
+ # 语义搜索(FAISS)
109
+ vector_store.index.hnsw.efSearch = 300
110
+ query_embedding = vector_store.embedding_function.embed_query(query)
111
+ D, I = vector_store.index.search(np.array([query_embedding]), min(top_n * 2, len(documents)))
112
+ print(f"FAISS 搜索结果 - 距离 (D): {D[0][:5]}... (前5个)")
113
+ print(f"FAISS 搜索结果 - 索引 (I): {I[0][:5]}... (前5个)")
114
+ semantic_results = []
115
+ if D.size > 0:
116
+ max_dist = np.max(D) if np.max(D) > 0 else 1.0
117
+ for idx, dist in zip(I[0], D[0]):
118
+ if idx == -1:
119
+ continue
120
+ doc_id = vector_store.index_to_docstore_id.get(idx)
121
+ if doc_id is None:
122
+ continue
123
+ doc = vector_store.docstore.search(doc_id)
124
+ if doc:
125
+ # 归一化距离为相似度(0到1,1为最相似),设置默认值
126
+ similarity = 1.0 - (dist / max_dist if max_dist > 0 else 0.5)
127
+ semantic_results.append((doc, similarity))
128
+ else:
129
+ print("警告:FAISS 距离数组为空,可能索引异常")
130
+
131
+ # 使用 doc_id 存储语义得分
132
+ semantic_scores = {}
133
+ for doc, score in semantic_results:
134
+ doc_id = doc_to_id.get(id(doc))
135
+ if doc_id is not None:
136
+ semantic_scores[doc_id] = score
137
+ print(f"语义得分 (semantic_scores): {dict(list(semantic_scores.items())[:5])}... (前5个)")
138
+
139
+ # 关键字搜索(BM25,使用预计算分词,调整参数)
140
+ tokenized_query = list(jieba.cut_for_search(query))
141
+ bm25 = BM25Okapi(tokenized_corpus, k1=1.5, b=0.75) # 调整 BM25 参数
142
+ bm25_scores = bm25.get_scores(tokenized_query)
143
+ print(f"BM25 得分 (bm25_scores): {bm25_scores[:5]}... (前5个)")
144
+
145
+ # 归一化 BM25 得分
146
+ max_bm25 = max(bm25_scores) if bm25_scores.size > 0 and max(bm25_scores) > 0 else 1.0
147
+ normalized_bm25_scores = bm25_scores / max_bm25 if max_bm25 > 0 else bm25_scores
148
+ print(f"归一化 BM25 得分 (normalized_bm25_scores): {normalized_bm25_scores[:5]}... (前5个)")
149
+
150
+ # 合并得分,仅对语义搜索结果进行 BM25 增强
151
+ combined_scores = {}
152
+ for i, (doc, _) in enumerate(semantic_results[:top_n * 2]): # 取前 top_n * 2 个语义结果
153
+ doc_id = doc_to_id.get(id(doc))
154
+ if doc_id is not None:
155
+ semantic_score = semantic_scores.get(doc_id, 0.0)
156
+ bm25_score = normalized_bm25_scores[int(doc_id)] if int(doc_id) < len(normalized_bm25_scores) else 0.0
157
+ combined_score = (bm25_weight * bm25_score) + (semantic_weight * semantic_score)
158
+ combined_scores[doc_id] = combined_score
159
+
160
+ # 填充剩余结果(若语义结果不足)
161
+ if len(combined_scores) < top_n:
162
+ for i in range(len(documents)):
163
+ doc_id = str(i)
164
+ if doc_id not in combined_scores:
165
+ semantic_score = semantic_scores.get(doc_id, 0.0)
166
+ bm25_score = normalized_bm25_scores[i] if i < len(normalized_bm25_scores) else 0.0
167
+ combined_score = (bm25_weight * bm25_score) + (semantic_weight * semantic_score)
168
+ combined_scores[doc_id] = combined_score
169
+ if len(combined_scores) >= top_n:
170
+ break
171
+
172
+ # 按组合得分排序
173
+ ranked_ids = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:top_n]
174
+ ranked_docs = [(id_to_doc[doc_id], score) for doc_id, score in ranked_ids]
175
+
176
+ print(f"Query: {query[:100]}... (长度: {len(query)})")
177
+ print(f"混合检索结果 (数量: {len(ranked_docs)}):")
178
+ for i, (doc, score) in enumerate(ranked_docs):
179
+ print(f" Doc {i}: {doc.page_content[:100]}... (来源: {doc.metadata.get('book', '未知来源')}, 得分: {score:.4f})")
180
+
181
+ return ranked_docs
182
+
183
+ except Exception as e:
184
+ error_msg = str(e)
185
+ print(f"错误详情: {error_msg}")
186
+ raise Exception(f"混合检索失败: {error_msg}")
187
+
188
+ # 构建 HNSW 索引
189
+ def build_hnsw_index(knowledge_base_path, index_path):
190
+ print("开始加载文档...")
191
+ start_time = time.time()
192
+ loader = DirectoryLoader(knowledge_base_path, glob="*.txt", loader_cls=lambda path: TextLoader(path, encoding="utf-8"), use_multithreading=False)
193
+ documents = loader.load()
194
+ load_time = time.time() - start_time
195
+ print(f"加载完成,共 {len(documents)} 个文档,耗时 {load_time:.2f} 秒")
196
+
197
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
198
+ if not os.path.exists("chunks.pkl"):
199
+ print("开始分片...")
200
+ start_time = time.time()
201
+ texts = []
202
+ total_chars = 0
203
+ total_bytes = 0
204
+ for i, doc in enumerate(documents):
205
+ doc_chunks = text_splitter.split_documents([doc])
206
+ for chunk in doc_chunks:
207
+ content = chunk.page_content
208
+ file_path = chunk.metadata.get("source", "")
209
+ book_name = os.path.basename(file_path).replace(".txt", "").replace("_", "·")
210
+ texts.append(Document(page_content=content, metadata={"book": book_name or "未知来源"}))
211
+ total_chars += len(content)
212
+ total_bytes += len(content.encode('utf-8'))
213
+ if i < 5:
214
+ print(f"文件 {i} 字符数: {len(doc.page_content)}, 字节数: {len(doc.page_content.encode('utf-8'))}, 来源: {file_path}")
215
+ if (i + 1) % 10 == 0:
216
+ print(f"分片进度: 已处理 {i + 1}/{len(documents)} 个文件,当前分片总数: {len(texts)}")
217
+ with open("chunks.pkl", "wb") as f:
218
+ pickle.dump(texts, f)
219
+ split_time = time.time() - start_time
220
+ print(f"分片完成,共 {len(texts)} 个 chunk,总字符数: {total_chars},总字节数: {total_bytes},耗时 {split_time:.2f} 秒")
221
+ else:
222
+ with open("chunks.pkl", "rb") as f:
223
+ texts = pickle.load(f)
224
+ print(f"加载已有分片,共 {len(texts)} 个 chunk")
225
+
226
+ if not os.path.exists("embeddings.npy"):
227
+ print("开始生成嵌入(使用 BAAI/bge-m3,CPU 模式,分批处理)...")
228
+ embeddings_array = embeddings.embed_documents(texts)
229
+ if os.path.exists("embeddings_temp.npy"):
230
+ os.remove("embeddings_temp.npy")
231
+ print(f"嵌入生成完成,维度: {embeddings_array.shape}")
232
+ else:
233
+ embeddings_array = np.load("embeddings.npy")
234
+ print(f"加载已有嵌入,维度: {embeddings_array.shape}")
235
+
236
+ dimension = embeddings_array.shape[1]
237
+ index = faiss.IndexHNSWFlat(dimension, 16)
238
+ index.hnsw.efConstruction = 100
239
+ print("开始构建 HNSW 索引...")
240
+
241
+ batch_size = 5000
242
+ total_vectors = embeddings_array.shape[0]
243
+ for i in range(0, total_vectors, batch_size):
244
+ batch = embeddings_array[i:i + batch_size]
245
+ index.add(batch)
246
+ print(f"索引构建进度: {min(i + batch_size, total_vectors)} / {total_vectors}")
247
+
248
+ text_embeddings = [(text.page_content, embeddings_array[i]) for i, text in enumerate(texts)]
249
+ vector_store = FAISS.from_embeddings(text_embeddings, embeddings, normalize_L2=True)
250
+ vector_store.index = index
251
+ vector_store.docstore._dict.clear()
252
+ vector_store.index_to_docstore_id.clear()
253
+
254
+ for i, text in enumerate(texts):
255
+ doc_id = str(i)
256
+ vector_store.docstore._dict[doc_id] = text
257
+ vector_store.index_to_docstore_id[i] = doc_id
258
+
259
+ print("开始保存索引...")
260
+ vector_store.save_local(index_path)
261
+ print(f"HNSW 索引已生成并保存到 '{index_path}'")
262
+ return vector_store, texts # 返回 vector_store 和分片文本
263
+
264
+ # 初始化嵌入模型
265
+ embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-m3")
266
+ print("已初始化 BAAI/bge-m3 嵌入模型,用于知识库检索(CPU 模式)")
267
+
268
+ # 加载或生成索引
269
+ index_path = "faiss_index_hnsw_new"
270
+ knowledge_base_path = "knowledge_base"
271
+
272
+ if not os.path.exists(index_path):
273
+ if os.path.exists(knowledge_base_path):
274
+ print("检测到 knowledge_base,正在生成 HNSW 索引...")
275
+ vector_store, all_documents = build_hnsw_index(knowledge_base_path, index_path)
276
+ else:
277
+ raise FileNotFoundError("未找到 'knowledge_base',请提供知识库数据")
278
+ else:
279
+ vector_store = FAISS.load_local(index_path, embeddings=embeddings, allow_dangerous_deserialization=True)
280
+ vector_store.index.hnsw.efSearch = 300
281
+ print("已加载 HNSW 索引 'faiss_index_hnsw_new',efSearch 设置为 300")
282
+ with open("chunks.pkl", "rb") as f:
283
+ all_documents = pickle.load(f)
284
+ # 验证 all_documents 内容
285
+ book_counts = {}
286
+ for doc in all_documents:
287
+ book = doc.metadata.get("book", "未知来源")
288
+ book_counts[book] = book_counts.get(book, 0) + 1
289
+ print(f"all_documents 书籍分布: {book_counts}")
290
+
291
+ # 预计算分词结果
292
+ tokenized_corpus = preprocess_corpus(all_documents)
293
+
294
+ # 初始化 ChatOpenAI
295
+ llm = ChatOpenAI(
296
+ model="deepseek/deepseek-r1:free",
297
+ api_key=os.environ["OPENROUTER_API_KEY"],
298
+ base_url="https://openrouter.ai/api/v1",
299
+ timeout=60,
300
+ temperature=0.3,
301
+ max_tokens=130000,
302
+ streaming=True
303
+ )
304
+
305
+ # 定义提示词模板
306
+ prompt_template = PromptTemplate(
307
+ input_variables=["context", "question", "chat_history"],
308
+ template="""
309
+ 你是一个研究李敖的专家,根据用户提出的问题{question}、最近10轮对话历史{chat_history}以及从李敖相关书籍和评论中检索的至少10篇文本内容{context}回答问题。
310
+ 在回答时,请注意以下几点:
311
+ - 结合李敖的写作风格和思想,筛选出与问题和对话历史最相关的检��内容,避免无关信息。
312
+ - 必须在回答中引用至少10篇不同的文本内容,引用格式为[引用: 文本序号],例如[引用: 1][引用: 2],并确保每篇文本在回答中都有明确使用。
313
+ - 在回答的末尾,必须以“引用文献”标题列出所有引用的文本序号及其内容摘要(每篇不超过50字)以及具体的书目信息(例如书名和章节),格式为:
314
+ - 引用文献:
315
+ 1. [文本 1] 摘要... 出自:书名,第X页/章节。
316
+ 2. [文本 2] 摘要... 出自:书名,第X页/章节。
317
+ (依此类推,至少10篇)
318
+ - 如果问题涉及李敖对某人或某事的评价,优先引用李敖的直接言论或文字,并说明出处。
319
+ - 回答应结构化、分段落,确保逻辑清晰,语言生动,类似李敖的犀利风格。
320
+ - 如果检索内容和历史不足以直接回答问题,可根据李敖的性格和观点推测其可能的看法,但需说明这是推测。
321
+ - 只能基于提供的知识库内容{context}和对话历史{chat_history}回答,不得引入外部信息。
322
+ - 对于列举类问题,控制在10个要点以内,并优先提供最相关项。
323
+ - 如果回答较长,结构化分段总结,分点作答控制在8个点以内。
324
+ - 根据对话历史调整回答,避免重复或矛盾。
325
+ - 并非搜索结果的所有内容都与用户的问题密切相关,你需要结合问题,对搜索结果进行甄别、筛选。
326
+ - 对于列举类的问题(如列举所有航班信息),尽量将答案控制在10个要点以内,并告诉用户可以查看搜索来源、获得完整信息。优先提供信息完整、最相关的列举项;如非必要,不要主动告诉用户搜索结果未提供的内容。
327
+ - 对于创作类的问题(如写论文),请务必在正文的段落中引用对应的参考编号,例如[引用:3][引用:5],不能只在文章末尾引用。你需要解读并概括用户的题目要求,选择合适的格式,充分利用搜索结果并抽取重要信息,生成符合用户要求、极具思想深度、富有创造力与专业性的答案。你的创作篇幅需要尽可能延长,对于每一个要点的论述要推测用户的意图,给出尽可能多角度的回答要点,且务必信息量大、论述详尽。
328
+ - 如果回答很长,请尽量结构化、分段落总结。如果需要分点作答,尽量控制在8个点以内,并合并相关的内容。
329
+ - 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
330
+ - 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
331
+ - 你的回答应该综合多个相关知识库内容来回答,不能重复引用一个知识库内容。
332
+ - 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
333
+ """
334
+ )
335
+
336
+ # 对话历史管理类
337
+ class ConversationHistory:
338
+ def __init__(self, max_length=10):
339
+ self.history = deque(maxlen=max_length)
340
+
341
+ def add_turn(self, question, answer):
342
+ self.history.append((question, answer))
343
+
344
+ def get_history(self):
345
+ return [(turn[0], turn[1]) for turn in self.history]
346
+
347
+ def clear(self):
348
+ self.history.clear()
349
+
350
+ # 用户会话状态类
351
+ class UserSession:
352
+ def __init__(self):
353
+ self.conversation = ConversationHistory()
354
+ self.output_queue = queue.Queue()
355
+ self.stop_flag = threading.Event()
356
+
357
+ # 生成回答的线程函数
358
+ def generate_answer_thread(question, session):
359
+ stop_flag = session.stop_flag
360
+ output_queue = session.output_queue
361
+ conversation = session.conversation
362
+
363
+ stop_flag.clear()
364
+ try:
365
+ history_list = conversation.get_history()
366
+ history_text = "\n".join([f"问: {q}\n答: {a}" for q, a in history_list]) if history_list else ""
367
+ query_with_context = f"{history_text}\n当前问题: {question}" if history_text else question
368
+
369
+ # 1. 使用 BAAI/bge-m3 生成查询嵌入
370
+ start_time = time.time()
371
+ query_embedding = embeddings.embed_query(query_with_context)
372
+ embed_time = time.time() - start_time
373
+ output_queue.put(f"嵌入耗时 (BAAI/bge-m3): {embed_time:.2f} 秒\n")
374
+
375
+ if stop_flag.is_set():
376
+ output_queue.put("生成已停止")
377
+ return
378
+
379
+ # 2. 使用混合检索(BM25 + FAISS)
380
+ start_time = time.time()
381
+ retrieved_docs_with_scores = hybrid_retrieval(
382
+ query_with_context,
383
+ vector_store,
384
+ all_documents,
385
+ tokenized_corpus,
386
+ top_n=15,
387
+ bm25_weight=0.2,
388
+ semantic_weight=0.8
389
+ )
390
+ retrieval_time = time.time() - start_time
391
+ output_queue.put(f"混合检索耗时: {retrieval_time:.2f} 秒\n")
392
+
393
+ if stop_flag.is_set():
394
+ output_queue.put("生成已停止")
395
+ return
396
+
397
+ # 调整 final_docs 数量,取前 10 篇
398
+ final_docs = [doc for doc, _ in retrieved_docs_with_scores][:10]
399
+ if len(final_docs) < 10:
400
+ output_queue.put(f"警告:仅检索到 {len(final_docs)} 篇文本,可能无法满足引用 10 篇的要求")
401
+
402
+ # 构造 context,包含文本内容和书目信息
403
+ context = "\n\n".join([f"[文本 {i+1}] {doc.page_content} (出处: {doc.metadata.get('book', '未知来源')})" for i, doc in enumerate(final_docs)])
404
+ chat_history = [HumanMessage(content=q) if i % 2 == 0 else AIMessage(content=a)
405
+ for i, (q, a) in enumerate(history_list)]
406
+ prompt = prompt_template.format(context=context, question=question, chat_history=history_text)
407
+
408
+ # 3. 使用 LLM 生成回答
409
+ answer = ""
410
+ start_time = time.time()
411
+ for chunk in llm.stream([HumanMessage(content=prompt)]):
412
+ if stop_flag.is_set():
413
+ output_queue.put(answer + "\n\n(生成已停止)")
414
+ return
415
+ answer += chunk.content
416
+ output_queue.put(answer)
417
+ llm_time = time.time() - start_time
418
+ output_queue.put(f"\nLLM 生成耗时: {llm_time:.2f} 秒")
419
+
420
+ conversation.add_turn(question, answer)
421
+ output_queue.put(answer)
422
+
423
+ except Exception as e:
424
+ output_queue.put(f"Error: {str(e)}")
425
+
426
+ # Gradio 接口函数
427
+ def answer_question(question, session_state):
428
+ if session_state is None:
429
+ session_state = UserSession()
430
+
431
+ thread = threading.Thread(target=generate_answer_thread, args=(question, session_state))
432
+ thread.start()
433
+
434
+ while thread.is_alive() or not session_state.output_queue.empty():
435
+ try:
436
+ output = session_state.output_queue.get(timeout=0.1)
437
+ yield output, session_state
438
+ except queue.Empty:
439
+ continue
440
+
441
+ while not session_state.output_queue.empty():
442
+ yield session_state.output_queue.get(), session_state
443
+
444
+ def stop_generation(session_state):
445
+ if session_state is not None:
446
+ session_state.stop_flag.set()
447
+ return "生成已停止,正在中止..."
448
+
449
+ def clear_conversation():
450
+ return "对话历史已清空,请开始新的对话。", UserSession()
451
+
452
+ # 创建 Gradio 界面
453
+ with gr.Blocks(title="AI李敖助手") as interface:
454
+ gr.Markdown("### AI李敖助手")
455
+ gr.Markdown("基于李敖163本相关书籍构建的知识库,支持上下文关联,记住最近10轮对话,输入问题以获取李敖风格的回答。")
456
+
457
+ session_state = gr.State(value=None)
458
+
459
+ with gr.Row():
460
+ with gr.Column(scale=3):
461
+ question_input = gr.Textbox(label="请输入您的问题", placeholder="输入您的问题...")
462
+ submit_button = gr.Button("提交")
463
+ with gr.Column(scale=1):
464
+ clear_button = gr.Button("新建对话")
465
+ stop_button = gr.Button("停止生成")
466
+
467
+ output_text = gr.Textbox(label="回答", interactive=False)
468
+
469
+ submit_button.click(fn=answer_question, inputs=[question_input, session_state], outputs=[output_text, session_state])
470
+ clear_button.click(fn=clear_conversation, inputs=None, outputs=[output_text, session_state])
471
+ stop_button.click(fn=stop_generation, inputs=[session_state], outputs=output_text)
472
+
473
+ # 启动应用
474
+ if __name__ == "__main__":
475
+ interface.launch(share=True)