Spaces:
Running
on
Zero
Running
on
Zero
aifeifei798
commited on
Commit
•
851bd03
1
Parent(s):
2c166e9
Upload 154 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- extras/expansion.py +129 -0
- extras/fooocus_expansion/README.md +12 -0
- extras/fooocus_expansion/config.json +40 -0
- extras/fooocus_expansion/huggingface-metadata.txt +5 -0
- extras/fooocus_expansion/merges.txt +0 -0
- extras/fooocus_expansion/positive.txt +642 -0
- extras/fooocus_expansion/pytorch_model.bin +3 -0
- extras/fooocus_expansion/special_tokens_map.json +5 -0
- extras/fooocus_expansion/tokenizer.json +0 -0
- extras/fooocus_expansion/tokenizer_config.json +10 -0
- extras/fooocus_expansion/vocab.json +0 -0
- ldm_patched/contrib/external.py +1954 -0
- ldm_patched/contrib/external_align_your_steps.py +55 -0
- ldm_patched/contrib/external_canny.py +301 -0
- ldm_patched/contrib/external_clip_sdxl.py +58 -0
- ldm_patched/contrib/external_compositing.py +204 -0
- ldm_patched/contrib/external_custom_sampler.py +316 -0
- ldm_patched/contrib/external_freelunch.py +115 -0
- ldm_patched/contrib/external_hypernetwork.py +121 -0
- ldm_patched/contrib/external_hypertile.py +85 -0
- ldm_patched/contrib/external_images.py +177 -0
- ldm_patched/contrib/external_latent.py +157 -0
- ldm_patched/contrib/external_mask.py +365 -0
- ldm_patched/contrib/external_model_advanced.py +188 -0
- ldm_patched/contrib/external_model_downscale.py +55 -0
- ldm_patched/contrib/external_model_merging.py +286 -0
- ldm_patched/contrib/external_perpneg.py +57 -0
- ldm_patched/contrib/external_photomaker.py +189 -0
- ldm_patched/contrib/external_post_processing.py +278 -0
- ldm_patched/contrib/external_rebatch.py +140 -0
- ldm_patched/contrib/external_sag.py +172 -0
- ldm_patched/contrib/external_sdupscale.py +49 -0
- ldm_patched/contrib/external_stable3d.py +104 -0
- ldm_patched/contrib/external_tomesd.py +179 -0
- ldm_patched/contrib/external_upscale_model.py +68 -0
- ldm_patched/contrib/external_video_model.py +108 -0
- ldm_patched/controlnet/cldm.py +312 -0
- ldm_patched/k_diffusion/sampling.py +908 -0
- ldm_patched/k_diffusion/utils.py +313 -0
- ldm_patched/ldm/models/autoencoder.py +228 -0
- ldm_patched/ldm/modules/attention.py +781 -0
- ldm_patched/ldm/modules/diffusionmodules/__init__.py +0 -0
- ldm_patched/ldm/modules/diffusionmodules/model.py +650 -0
- ldm_patched/ldm/modules/diffusionmodules/openaimodel.py +886 -0
- ldm_patched/ldm/modules/diffusionmodules/upscaling.py +85 -0
- ldm_patched/ldm/modules/diffusionmodules/util.py +304 -0
- ldm_patched/ldm/modules/distributions/__init__.py +0 -0
- ldm_patched/ldm/modules/distributions/distributions.py +92 -0
- ldm_patched/ldm/modules/ema.py +80 -0
- ldm_patched/ldm/modules/encoders/__init__.py +0 -0
extras/expansion.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fooocus GPT2 Expansion
|
2 |
+
# Algorithm created by Lvmin Zhang at 2023, Stanford
|
3 |
+
# If used inside Fooocus, any use is permitted.
|
4 |
+
# If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0).
|
5 |
+
# This applies to the word list, vocab, model, and algorithm.
|
6 |
+
|
7 |
+
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import math
|
11 |
+
import ldm_patched.modules.model_management as model_management
|
12 |
+
|
13 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
|
15 |
+
# from modules.config import path_fooocus_expansion
|
16 |
+
from ldm_patched.modules.model_patcher import ModelPatcher
|
17 |
+
|
18 |
+
path_fooocus_expansion ="extras/fooocus_expansion"
|
19 |
+
# limitation of np.random.seed(), called from transformers.set_seed()
|
20 |
+
SEED_LIMIT_NUMPY = 2**32
|
21 |
+
neg_inf = - 8192.0
|
22 |
+
|
23 |
+
|
24 |
+
def safe_str(x):
|
25 |
+
x = str(x)
|
26 |
+
for _ in range(16):
|
27 |
+
x = x.replace(' ', ' ')
|
28 |
+
return x.strip(",. \r\n")
|
29 |
+
|
30 |
+
|
31 |
+
def remove_pattern(x, pattern):
|
32 |
+
for p in pattern:
|
33 |
+
x = x.replace(p, '')
|
34 |
+
return x
|
35 |
+
|
36 |
+
|
37 |
+
class FooocusExpansion:
|
38 |
+
def __init__(self):
|
39 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion)
|
40 |
+
|
41 |
+
positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'),
|
42 |
+
encoding='utf-8').read().splitlines()
|
43 |
+
positive_words = ['Ġ' + x.lower() for x in positive_words if x != '']
|
44 |
+
|
45 |
+
self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf
|
46 |
+
|
47 |
+
debug_list = []
|
48 |
+
for k, v in self.tokenizer.vocab.items():
|
49 |
+
if k in positive_words:
|
50 |
+
self.logits_bias[0, v] = 0
|
51 |
+
debug_list.append(k[1:])
|
52 |
+
|
53 |
+
print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.')
|
54 |
+
|
55 |
+
# debug_list = '\n'.join(sorted(debug_list))
|
56 |
+
# print(debug_list)
|
57 |
+
|
58 |
+
# t11 = self.tokenizer(',', return_tensors="np")
|
59 |
+
# t198 = self.tokenizer('\n', return_tensors="np")
|
60 |
+
# eos = self.tokenizer.eos_token_id
|
61 |
+
|
62 |
+
self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion)
|
63 |
+
self.model.eval()
|
64 |
+
|
65 |
+
load_device = model_management.text_encoder_device()
|
66 |
+
offload_device = model_management.text_encoder_offload_device()
|
67 |
+
|
68 |
+
# MPS hack
|
69 |
+
if model_management.is_device_mps(load_device):
|
70 |
+
load_device = torch.device('cpu')
|
71 |
+
offload_device = torch.device('cpu')
|
72 |
+
|
73 |
+
use_fp16 = model_management.should_use_fp16(device=load_device)
|
74 |
+
|
75 |
+
if use_fp16:
|
76 |
+
self.model.half()
|
77 |
+
|
78 |
+
self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
|
79 |
+
print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
@torch.inference_mode()
|
83 |
+
def logits_processor(self, input_ids, scores):
|
84 |
+
assert scores.ndim == 2 and scores.shape[0] == 1
|
85 |
+
self.logits_bias = self.logits_bias.to(scores)
|
86 |
+
|
87 |
+
bias = self.logits_bias.clone()
|
88 |
+
bias[0, input_ids[0].to(bias.device).long()] = neg_inf
|
89 |
+
bias[0, 11] = 0
|
90 |
+
|
91 |
+
return scores + bias
|
92 |
+
|
93 |
+
@torch.no_grad()
|
94 |
+
@torch.inference_mode()
|
95 |
+
def __call__(self, prompt, seed):
|
96 |
+
if prompt == '':
|
97 |
+
return ''
|
98 |
+
|
99 |
+
if self.patcher.current_device != self.patcher.load_device:
|
100 |
+
print('Fooocus Expansion loaded by itself.')
|
101 |
+
model_management.load_model_gpu(self.patcher)
|
102 |
+
|
103 |
+
seed = int(seed) % SEED_LIMIT_NUMPY
|
104 |
+
set_seed(seed)
|
105 |
+
prompt = safe_str(prompt) + ','
|
106 |
+
|
107 |
+
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
|
108 |
+
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
|
109 |
+
tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device)
|
110 |
+
|
111 |
+
current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1])
|
112 |
+
max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0))
|
113 |
+
max_new_tokens = max_token_length - current_token_length
|
114 |
+
|
115 |
+
if max_new_tokens == 0:
|
116 |
+
return prompt[:-1]
|
117 |
+
|
118 |
+
# https://huggingface.co/blog/introducing-csearch
|
119 |
+
# https://huggingface.co/docs/transformers/generation_strategies
|
120 |
+
features = self.model.generate(**tokenized_kwargs,
|
121 |
+
top_k=100,
|
122 |
+
max_new_tokens=max_new_tokens,
|
123 |
+
do_sample=True,
|
124 |
+
logits_processor=LogitsProcessorList([self.logits_processor]))
|
125 |
+
|
126 |
+
response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
|
127 |
+
result = safe_str(response[0])
|
128 |
+
|
129 |
+
return result
|
extras/fooocus_expansion/README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: agpl-3.0
|
3 |
+
---
|
4 |
+
|
5 |
+
GPT2 Prompt Expansion model from [lllyasviel/Fooocus](https://github.com/lllyasviel/Fooocus)
|
6 |
+
|
7 |
+
Third-party [license terms](https://github.com/lllyasviel/Fooocus/blob/main/LICENSE)
|
8 |
+
|
9 |
+
## Disclaimer
|
10 |
+
All trademarks, logos, and brand names are the property of their respective owners.
|
11 |
+
All company, product and service names used in this website and licensed applications are for identification purposes only.
|
12 |
+
Use of these names, trademarks, and brands does not imply endorsement.
|
extras/fooocus_expansion/config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "gpt2",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPT2LMHeadModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.1,
|
8 |
+
"bos_token_id": 50256,
|
9 |
+
"embd_pdrop": 0.1,
|
10 |
+
"eos_token_id": 50256,
|
11 |
+
"pad_token_id": 50256,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"layer_norm_epsilon": 1e-05,
|
14 |
+
"model_type": "gpt2",
|
15 |
+
"n_ctx": 1024,
|
16 |
+
"n_embd": 768,
|
17 |
+
"n_head": 12,
|
18 |
+
"n_inner": null,
|
19 |
+
"n_layer": 12,
|
20 |
+
"n_positions": 1024,
|
21 |
+
"reorder_and_upcast_attn": false,
|
22 |
+
"resid_pdrop": 0.1,
|
23 |
+
"scale_attn_by_inverse_layer_idx": false,
|
24 |
+
"scale_attn_weights": true,
|
25 |
+
"summary_activation": null,
|
26 |
+
"summary_first_dropout": 0.1,
|
27 |
+
"summary_proj_to_labels": true,
|
28 |
+
"summary_type": "cls_index",
|
29 |
+
"summary_use_proj": true,
|
30 |
+
"task_specific_params": {
|
31 |
+
"text-generation": {
|
32 |
+
"do_sample": true,
|
33 |
+
"max_length": 50
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"torch_dtype": "float32",
|
37 |
+
"transformers_version": "4.23.0.dev0",
|
38 |
+
"use_cache": true,
|
39 |
+
"vocab_size": 50257
|
40 |
+
}
|
extras/fooocus_expansion/huggingface-metadata.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
url: https://huggingface.co/LykosAI/GPT-Prompt-Expansion-Fooocus-v2
|
2 |
+
branch: main
|
3 |
+
download date: 2024-04-20 17:49:07
|
4 |
+
sha256sum:
|
5 |
+
dd54cc90d95d2c72b97830e4b38f44a6521847284d5b9dbcfd16ba82779cdeb3 pytorch_model.bin
|
extras/fooocus_expansion/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
extras/fooocus_expansion/positive.txt
ADDED
@@ -0,0 +1,642 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
abundant
|
2 |
+
accelerated
|
3 |
+
accepted
|
4 |
+
accepting
|
5 |
+
acclaimed
|
6 |
+
accomplished
|
7 |
+
acknowledged
|
8 |
+
activated
|
9 |
+
adapted
|
10 |
+
adjusted
|
11 |
+
admirable
|
12 |
+
adorable
|
13 |
+
adorned
|
14 |
+
advanced
|
15 |
+
adventurous
|
16 |
+
advocated
|
17 |
+
aesthetic
|
18 |
+
affirmed
|
19 |
+
affluent
|
20 |
+
agile
|
21 |
+
aimed
|
22 |
+
aligned
|
23 |
+
alive
|
24 |
+
altered
|
25 |
+
amazing
|
26 |
+
ambient
|
27 |
+
amplified
|
28 |
+
analytical
|
29 |
+
animated
|
30 |
+
appealing
|
31 |
+
applauded
|
32 |
+
appreciated
|
33 |
+
ardent
|
34 |
+
aromatic
|
35 |
+
arranged
|
36 |
+
arresting
|
37 |
+
articulate
|
38 |
+
artistic
|
39 |
+
associated
|
40 |
+
assured
|
41 |
+
astonishing
|
42 |
+
astounding
|
43 |
+
atmosphere
|
44 |
+
attempted
|
45 |
+
attentive
|
46 |
+
attractive
|
47 |
+
authentic
|
48 |
+
authoritative
|
49 |
+
awarded
|
50 |
+
awesome
|
51 |
+
backed
|
52 |
+
background
|
53 |
+
baked
|
54 |
+
balance
|
55 |
+
balanced
|
56 |
+
balancing
|
57 |
+
beaten
|
58 |
+
beautiful
|
59 |
+
beloved
|
60 |
+
beneficial
|
61 |
+
benevolent
|
62 |
+
best
|
63 |
+
bestowed
|
64 |
+
blazing
|
65 |
+
blended
|
66 |
+
blessed
|
67 |
+
boosted
|
68 |
+
borne
|
69 |
+
brave
|
70 |
+
breathtaking
|
71 |
+
brewed
|
72 |
+
bright
|
73 |
+
brilliant
|
74 |
+
brought
|
75 |
+
built
|
76 |
+
burning
|
77 |
+
calm
|
78 |
+
calmed
|
79 |
+
candid
|
80 |
+
caring
|
81 |
+
carried
|
82 |
+
catchy
|
83 |
+
celebrated
|
84 |
+
celestial
|
85 |
+
certain
|
86 |
+
championed
|
87 |
+
changed
|
88 |
+
charismatic
|
89 |
+
charming
|
90 |
+
chased
|
91 |
+
cheered
|
92 |
+
cheerful
|
93 |
+
cherished
|
94 |
+
chic
|
95 |
+
chosen
|
96 |
+
cinematic
|
97 |
+
clad
|
98 |
+
classic
|
99 |
+
classy
|
100 |
+
clear
|
101 |
+
coached
|
102 |
+
coherent
|
103 |
+
collected
|
104 |
+
color
|
105 |
+
colorful
|
106 |
+
colors
|
107 |
+
colossal
|
108 |
+
combined
|
109 |
+
comforting
|
110 |
+
commanding
|
111 |
+
committed
|
112 |
+
compassionate
|
113 |
+
compatible
|
114 |
+
complete
|
115 |
+
complex
|
116 |
+
complimentary
|
117 |
+
composed
|
118 |
+
composition
|
119 |
+
comprehensive
|
120 |
+
conceived
|
121 |
+
conferred
|
122 |
+
confident
|
123 |
+
connected
|
124 |
+
considerable
|
125 |
+
considered
|
126 |
+
consistent
|
127 |
+
conspicuous
|
128 |
+
constructed
|
129 |
+
constructive
|
130 |
+
contemplated
|
131 |
+
contemporary
|
132 |
+
content
|
133 |
+
contrasted
|
134 |
+
conveyed
|
135 |
+
cooked
|
136 |
+
cool
|
137 |
+
coordinated
|
138 |
+
coupled
|
139 |
+
courageous
|
140 |
+
coveted
|
141 |
+
cozy
|
142 |
+
created
|
143 |
+
creative
|
144 |
+
credited
|
145 |
+
crisp
|
146 |
+
critical
|
147 |
+
cultivated
|
148 |
+
cured
|
149 |
+
curious
|
150 |
+
current
|
151 |
+
customized
|
152 |
+
cute
|
153 |
+
daring
|
154 |
+
darling
|
155 |
+
dazzling
|
156 |
+
decorated
|
157 |
+
decorative
|
158 |
+
dedicated
|
159 |
+
deep
|
160 |
+
defended
|
161 |
+
definitive
|
162 |
+
delicate
|
163 |
+
delightful
|
164 |
+
delivered
|
165 |
+
depicted
|
166 |
+
designed
|
167 |
+
desirable
|
168 |
+
desired
|
169 |
+
destined
|
170 |
+
detail
|
171 |
+
detailed
|
172 |
+
determined
|
173 |
+
developed
|
174 |
+
devoted
|
175 |
+
devout
|
176 |
+
diligent
|
177 |
+
direct
|
178 |
+
directed
|
179 |
+
discovered
|
180 |
+
dispatched
|
181 |
+
displayed
|
182 |
+
distilled
|
183 |
+
distinct
|
184 |
+
distinctive
|
185 |
+
distinguished
|
186 |
+
diverse
|
187 |
+
divine
|
188 |
+
dramatic
|
189 |
+
draped
|
190 |
+
dreamed
|
191 |
+
driven
|
192 |
+
dynamic
|
193 |
+
earnest
|
194 |
+
eased
|
195 |
+
ecstatic
|
196 |
+
educated
|
197 |
+
effective
|
198 |
+
elaborate
|
199 |
+
elegant
|
200 |
+
elevated
|
201 |
+
elite
|
202 |
+
eminent
|
203 |
+
emotional
|
204 |
+
empowered
|
205 |
+
empowering
|
206 |
+
enchanted
|
207 |
+
encouraged
|
208 |
+
endorsed
|
209 |
+
endowed
|
210 |
+
enduring
|
211 |
+
energetic
|
212 |
+
engaging
|
213 |
+
enhanced
|
214 |
+
enigmatic
|
215 |
+
enlightened
|
216 |
+
enormous
|
217 |
+
enticing
|
218 |
+
envisioned
|
219 |
+
epic
|
220 |
+
esteemed
|
221 |
+
eternal
|
222 |
+
everlasting
|
223 |
+
evolved
|
224 |
+
exalted
|
225 |
+
examining
|
226 |
+
excellent
|
227 |
+
exceptional
|
228 |
+
exciting
|
229 |
+
exclusive
|
230 |
+
exemplary
|
231 |
+
exotic
|
232 |
+
expansive
|
233 |
+
exposed
|
234 |
+
expressive
|
235 |
+
exquisite
|
236 |
+
extended
|
237 |
+
extraordinary
|
238 |
+
extremely
|
239 |
+
fabulous
|
240 |
+
facilitated
|
241 |
+
fair
|
242 |
+
faithful
|
243 |
+
famous
|
244 |
+
fancy
|
245 |
+
fantastic
|
246 |
+
fascinating
|
247 |
+
fashionable
|
248 |
+
fashioned
|
249 |
+
favorable
|
250 |
+
favored
|
251 |
+
fearless
|
252 |
+
fermented
|
253 |
+
fertile
|
254 |
+
festive
|
255 |
+
fiery
|
256 |
+
fine
|
257 |
+
finest
|
258 |
+
firm
|
259 |
+
fixed
|
260 |
+
flaming
|
261 |
+
flashing
|
262 |
+
flashy
|
263 |
+
flavored
|
264 |
+
flawless
|
265 |
+
flourishing
|
266 |
+
flowing
|
267 |
+
focus
|
268 |
+
focused
|
269 |
+
formal
|
270 |
+
formed
|
271 |
+
fortunate
|
272 |
+
fostering
|
273 |
+
frank
|
274 |
+
fresh
|
275 |
+
fried
|
276 |
+
friendly
|
277 |
+
fruitful
|
278 |
+
fulfilled
|
279 |
+
full
|
280 |
+
futuristic
|
281 |
+
generous
|
282 |
+
gentle
|
283 |
+
genuine
|
284 |
+
gifted
|
285 |
+
gigantic
|
286 |
+
glamorous
|
287 |
+
glorious
|
288 |
+
glossy
|
289 |
+
glowing
|
290 |
+
gorgeous
|
291 |
+
graceful
|
292 |
+
gracious
|
293 |
+
grand
|
294 |
+
granted
|
295 |
+
grateful
|
296 |
+
great
|
297 |
+
grilled
|
298 |
+
grounded
|
299 |
+
grown
|
300 |
+
guarded
|
301 |
+
guided
|
302 |
+
hailed
|
303 |
+
handsome
|
304 |
+
healing
|
305 |
+
healthy
|
306 |
+
heartfelt
|
307 |
+
heavenly
|
308 |
+
heroic
|
309 |
+
highly
|
310 |
+
historic
|
311 |
+
holistic
|
312 |
+
holy
|
313 |
+
honest
|
314 |
+
honored
|
315 |
+
hoped
|
316 |
+
hopeful
|
317 |
+
iconic
|
318 |
+
ideal
|
319 |
+
illuminated
|
320 |
+
illuminating
|
321 |
+
illumination
|
322 |
+
illustrious
|
323 |
+
imaginative
|
324 |
+
imagined
|
325 |
+
immense
|
326 |
+
immortal
|
327 |
+
imposing
|
328 |
+
impressive
|
329 |
+
improved
|
330 |
+
incredible
|
331 |
+
infinite
|
332 |
+
informed
|
333 |
+
ingenious
|
334 |
+
innocent
|
335 |
+
innovative
|
336 |
+
insightful
|
337 |
+
inspirational
|
338 |
+
inspired
|
339 |
+
inspiring
|
340 |
+
instructed
|
341 |
+
integrated
|
342 |
+
intense
|
343 |
+
intricate
|
344 |
+
intriguing
|
345 |
+
invaluable
|
346 |
+
invented
|
347 |
+
investigative
|
348 |
+
invincible
|
349 |
+
inviting
|
350 |
+
irresistible
|
351 |
+
joined
|
352 |
+
joyful
|
353 |
+
keen
|
354 |
+
kindly
|
355 |
+
kinetic
|
356 |
+
knockout
|
357 |
+
laced
|
358 |
+
lasting
|
359 |
+
lauded
|
360 |
+
lavish
|
361 |
+
legendary
|
362 |
+
lifted
|
363 |
+
light
|
364 |
+
limited
|
365 |
+
linked
|
366 |
+
lively
|
367 |
+
located
|
368 |
+
logical
|
369 |
+
loved
|
370 |
+
lovely
|
371 |
+
loving
|
372 |
+
loyal
|
373 |
+
lucid
|
374 |
+
lucky
|
375 |
+
lush
|
376 |
+
luxurious
|
377 |
+
luxury
|
378 |
+
magic
|
379 |
+
magical
|
380 |
+
magnificent
|
381 |
+
majestic
|
382 |
+
marked
|
383 |
+
marvelous
|
384 |
+
massive
|
385 |
+
matched
|
386 |
+
matured
|
387 |
+
meaningful
|
388 |
+
memorable
|
389 |
+
merged
|
390 |
+
merry
|
391 |
+
meticulous
|
392 |
+
mindful
|
393 |
+
miraculous
|
394 |
+
modern
|
395 |
+
modified
|
396 |
+
monstrous
|
397 |
+
monumental
|
398 |
+
motivated
|
399 |
+
motivational
|
400 |
+
moved
|
401 |
+
moving
|
402 |
+
mystical
|
403 |
+
mythical
|
404 |
+
naive
|
405 |
+
neat
|
406 |
+
new
|
407 |
+
nice
|
408 |
+
nifty
|
409 |
+
noble
|
410 |
+
notable
|
411 |
+
noteworthy
|
412 |
+
novel
|
413 |
+
nuanced
|
414 |
+
offered
|
415 |
+
open
|
416 |
+
optimal
|
417 |
+
optimistic
|
418 |
+
orderly
|
419 |
+
organized
|
420 |
+
original
|
421 |
+
originated
|
422 |
+
outstanding
|
423 |
+
overwhelming
|
424 |
+
paired
|
425 |
+
palpable
|
426 |
+
passionate
|
427 |
+
peaceful
|
428 |
+
perfect
|
429 |
+
perfected
|
430 |
+
perpetual
|
431 |
+
persistent
|
432 |
+
phenomenal
|
433 |
+
pious
|
434 |
+
pivotal
|
435 |
+
placed
|
436 |
+
planned
|
437 |
+
pleasant
|
438 |
+
pleased
|
439 |
+
pleasing
|
440 |
+
plentiful
|
441 |
+
plotted
|
442 |
+
plush
|
443 |
+
poetic
|
444 |
+
poignant
|
445 |
+
polished
|
446 |
+
positive
|
447 |
+
praised
|
448 |
+
precious
|
449 |
+
precise
|
450 |
+
premier
|
451 |
+
premium
|
452 |
+
presented
|
453 |
+
preserved
|
454 |
+
prestigious
|
455 |
+
pretty
|
456 |
+
priceless
|
457 |
+
prime
|
458 |
+
pristine
|
459 |
+
probing
|
460 |
+
productive
|
461 |
+
professional
|
462 |
+
profound
|
463 |
+
progressed
|
464 |
+
progressive
|
465 |
+
prominent
|
466 |
+
promoted
|
467 |
+
pronounced
|
468 |
+
propelled
|
469 |
+
proportional
|
470 |
+
prosperous
|
471 |
+
protected
|
472 |
+
provided
|
473 |
+
provocative
|
474 |
+
pure
|
475 |
+
pursued
|
476 |
+
pushed
|
477 |
+
quaint
|
478 |
+
quality
|
479 |
+
questioning
|
480 |
+
quiet
|
481 |
+
radiant
|
482 |
+
rare
|
483 |
+
rational
|
484 |
+
real
|
485 |
+
reborn
|
486 |
+
reclaimed
|
487 |
+
recognized
|
488 |
+
recovered
|
489 |
+
refined
|
490 |
+
reflected
|
491 |
+
refreshed
|
492 |
+
refreshing
|
493 |
+
related
|
494 |
+
relaxed
|
495 |
+
relentless
|
496 |
+
reliable
|
497 |
+
relieved
|
498 |
+
remarkable
|
499 |
+
renewed
|
500 |
+
renowned
|
501 |
+
representative
|
502 |
+
rescued
|
503 |
+
resilient
|
504 |
+
respected
|
505 |
+
respectful
|
506 |
+
restored
|
507 |
+
retrieved
|
508 |
+
revealed
|
509 |
+
revealing
|
510 |
+
revered
|
511 |
+
revived
|
512 |
+
rewarded
|
513 |
+
rich
|
514 |
+
roasted
|
515 |
+
robust
|
516 |
+
romantic
|
517 |
+
royal
|
518 |
+
sacred
|
519 |
+
salient
|
520 |
+
satisfied
|
521 |
+
satisfying
|
522 |
+
saturated
|
523 |
+
saved
|
524 |
+
scenic
|
525 |
+
scientific
|
526 |
+
select
|
527 |
+
sensational
|
528 |
+
serious
|
529 |
+
set
|
530 |
+
shaped
|
531 |
+
sharp
|
532 |
+
shielded
|
533 |
+
shining
|
534 |
+
shiny
|
535 |
+
shown
|
536 |
+
significant
|
537 |
+
silent
|
538 |
+
sincere
|
539 |
+
singular
|
540 |
+
situated
|
541 |
+
sleek
|
542 |
+
slick
|
543 |
+
smart
|
544 |
+
snug
|
545 |
+
solemn
|
546 |
+
solid
|
547 |
+
soothing
|
548 |
+
sophisticated
|
549 |
+
sought
|
550 |
+
sparkling
|
551 |
+
special
|
552 |
+
spectacular
|
553 |
+
sped
|
554 |
+
spirited
|
555 |
+
spiritual
|
556 |
+
splendid
|
557 |
+
spread
|
558 |
+
stable
|
559 |
+
steady
|
560 |
+
still
|
561 |
+
stimulated
|
562 |
+
stimulating
|
563 |
+
stirred
|
564 |
+
straightforward
|
565 |
+
striking
|
566 |
+
strong
|
567 |
+
structured
|
568 |
+
stunning
|
569 |
+
sturdy
|
570 |
+
stylish
|
571 |
+
sublime
|
572 |
+
successful
|
573 |
+
sunny
|
574 |
+
superb
|
575 |
+
superior
|
576 |
+
supplied
|
577 |
+
supported
|
578 |
+
supportive
|
579 |
+
supreme
|
580 |
+
sure
|
581 |
+
surreal
|
582 |
+
sweet
|
583 |
+
symbolic
|
584 |
+
symmetry
|
585 |
+
synchronized
|
586 |
+
systematic
|
587 |
+
tailored
|
588 |
+
taking
|
589 |
+
targeted
|
590 |
+
taught
|
591 |
+
tempting
|
592 |
+
tender
|
593 |
+
terrific
|
594 |
+
thankful
|
595 |
+
theatrical
|
596 |
+
thought
|
597 |
+
thoughtful
|
598 |
+
thrilled
|
599 |
+
thrilling
|
600 |
+
thriving
|
601 |
+
tidy
|
602 |
+
timeless
|
603 |
+
touching
|
604 |
+
tough
|
605 |
+
trained
|
606 |
+
tranquil
|
607 |
+
transformed
|
608 |
+
translucent
|
609 |
+
transparent
|
610 |
+
transported
|
611 |
+
tremendous
|
612 |
+
trendy
|
613 |
+
tried
|
614 |
+
trim
|
615 |
+
true
|
616 |
+
trustworthy
|
617 |
+
unbelievable
|
618 |
+
unconditional
|
619 |
+
uncovered
|
620 |
+
unified
|
621 |
+
unique
|
622 |
+
united
|
623 |
+
universal
|
624 |
+
unmatched
|
625 |
+
unparalleled
|
626 |
+
upheld
|
627 |
+
valiant
|
628 |
+
valued
|
629 |
+
varied
|
630 |
+
very
|
631 |
+
vibrant
|
632 |
+
virtuous
|
633 |
+
vivid
|
634 |
+
warm
|
635 |
+
wealthy
|
636 |
+
whole
|
637 |
+
winning
|
638 |
+
wished
|
639 |
+
witty
|
640 |
+
wonderful
|
641 |
+
worshipped
|
642 |
+
worthy
|
extras/fooocus_expansion/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd54cc90d95d2c72b97830e4b38f44a6521847284d5b9dbcfd16ba82779cdeb3
|
3 |
+
size 351283802
|
extras/fooocus_expansion/special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
extras/fooocus_expansion/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
extras/fooocus_expansion/tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"eos_token": "<|endoftext|>",
|
5 |
+
"model_max_length": 1024,
|
6 |
+
"name_or_path": "gpt2",
|
7 |
+
"special_tokens_map_file": null,
|
8 |
+
"tokenizer_class": "GPT2Tokenizer",
|
9 |
+
"unk_token": "<|endoftext|>"
|
10 |
+
}
|
extras/fooocus_expansion/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ldm_patched/contrib/external.py
ADDED
@@ -0,0 +1,1954 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
import json
|
8 |
+
import hashlib
|
9 |
+
import traceback
|
10 |
+
import math
|
11 |
+
import time
|
12 |
+
import random
|
13 |
+
|
14 |
+
from PIL import Image, ImageOps, ImageSequence
|
15 |
+
from PIL.PngImagePlugin import PngInfo
|
16 |
+
import numpy as np
|
17 |
+
import safetensors.torch
|
18 |
+
|
19 |
+
pass # sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "ldm_patched"))
|
20 |
+
|
21 |
+
|
22 |
+
import ldm_patched.modules.diffusers_load
|
23 |
+
import ldm_patched.modules.samplers
|
24 |
+
import ldm_patched.modules.sample
|
25 |
+
import ldm_patched.modules.sd
|
26 |
+
import ldm_patched.modules.utils
|
27 |
+
import ldm_patched.modules.controlnet
|
28 |
+
|
29 |
+
import ldm_patched.modules.clip_vision
|
30 |
+
|
31 |
+
import ldm_patched.modules.model_management
|
32 |
+
from ldm_patched.modules.args_parser import args
|
33 |
+
|
34 |
+
import importlib
|
35 |
+
|
36 |
+
import ldm_patched.utils.path_utils
|
37 |
+
import ldm_patched.utils.latent_visualization
|
38 |
+
|
39 |
+
def before_node_execution():
|
40 |
+
ldm_patched.modules.model_management.throw_exception_if_processing_interrupted()
|
41 |
+
|
42 |
+
def interrupt_processing(value=True):
|
43 |
+
ldm_patched.modules.model_management.interrupt_current_processing(value)
|
44 |
+
|
45 |
+
MAX_RESOLUTION=8192
|
46 |
+
|
47 |
+
class CLIPTextEncode:
|
48 |
+
@classmethod
|
49 |
+
def INPUT_TYPES(s):
|
50 |
+
return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
|
51 |
+
RETURN_TYPES = ("CONDITIONING",)
|
52 |
+
FUNCTION = "encode"
|
53 |
+
|
54 |
+
CATEGORY = "conditioning"
|
55 |
+
|
56 |
+
def encode(self, clip, text):
|
57 |
+
tokens = clip.tokenize(text)
|
58 |
+
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
|
59 |
+
return ([[cond, {"pooled_output": pooled}]], )
|
60 |
+
|
61 |
+
class ConditioningCombine:
|
62 |
+
@classmethod
|
63 |
+
def INPUT_TYPES(s):
|
64 |
+
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
|
65 |
+
RETURN_TYPES = ("CONDITIONING",)
|
66 |
+
FUNCTION = "combine"
|
67 |
+
|
68 |
+
CATEGORY = "conditioning"
|
69 |
+
|
70 |
+
def combine(self, conditioning_1, conditioning_2):
|
71 |
+
return (conditioning_1 + conditioning_2, )
|
72 |
+
|
73 |
+
class ConditioningAverage :
|
74 |
+
@classmethod
|
75 |
+
def INPUT_TYPES(s):
|
76 |
+
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
|
77 |
+
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
78 |
+
}}
|
79 |
+
RETURN_TYPES = ("CONDITIONING",)
|
80 |
+
FUNCTION = "addWeighted"
|
81 |
+
|
82 |
+
CATEGORY = "conditioning"
|
83 |
+
|
84 |
+
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
|
85 |
+
out = []
|
86 |
+
|
87 |
+
if len(conditioning_from) > 1:
|
88 |
+
print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
|
89 |
+
|
90 |
+
cond_from = conditioning_from[0][0]
|
91 |
+
pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
|
92 |
+
|
93 |
+
for i in range(len(conditioning_to)):
|
94 |
+
t1 = conditioning_to[i][0]
|
95 |
+
pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
|
96 |
+
t0 = cond_from[:,:t1.shape[1]]
|
97 |
+
if t0.shape[1] < t1.shape[1]:
|
98 |
+
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
|
99 |
+
|
100 |
+
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
|
101 |
+
t_to = conditioning_to[i][1].copy()
|
102 |
+
if pooled_output_from is not None and pooled_output_to is not None:
|
103 |
+
t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
|
104 |
+
elif pooled_output_from is not None:
|
105 |
+
t_to["pooled_output"] = pooled_output_from
|
106 |
+
|
107 |
+
n = [tw, t_to]
|
108 |
+
out.append(n)
|
109 |
+
return (out, )
|
110 |
+
|
111 |
+
class ConditioningConcat:
|
112 |
+
@classmethod
|
113 |
+
def INPUT_TYPES(s):
|
114 |
+
return {"required": {
|
115 |
+
"conditioning_to": ("CONDITIONING",),
|
116 |
+
"conditioning_from": ("CONDITIONING",),
|
117 |
+
}}
|
118 |
+
RETURN_TYPES = ("CONDITIONING",)
|
119 |
+
FUNCTION = "concat"
|
120 |
+
|
121 |
+
CATEGORY = "conditioning"
|
122 |
+
|
123 |
+
def concat(self, conditioning_to, conditioning_from):
|
124 |
+
out = []
|
125 |
+
|
126 |
+
if len(conditioning_from) > 1:
|
127 |
+
print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
|
128 |
+
|
129 |
+
cond_from = conditioning_from[0][0]
|
130 |
+
|
131 |
+
for i in range(len(conditioning_to)):
|
132 |
+
t1 = conditioning_to[i][0]
|
133 |
+
tw = torch.cat((t1, cond_from),1)
|
134 |
+
n = [tw, conditioning_to[i][1].copy()]
|
135 |
+
out.append(n)
|
136 |
+
|
137 |
+
return (out, )
|
138 |
+
|
139 |
+
class ConditioningSetArea:
|
140 |
+
@classmethod
|
141 |
+
def INPUT_TYPES(s):
|
142 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
143 |
+
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
144 |
+
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
145 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
146 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
147 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
148 |
+
}}
|
149 |
+
RETURN_TYPES = ("CONDITIONING",)
|
150 |
+
FUNCTION = "append"
|
151 |
+
|
152 |
+
CATEGORY = "conditioning"
|
153 |
+
|
154 |
+
def append(self, conditioning, width, height, x, y, strength):
|
155 |
+
c = []
|
156 |
+
for t in conditioning:
|
157 |
+
n = [t[0], t[1].copy()]
|
158 |
+
n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
|
159 |
+
n[1]['strength'] = strength
|
160 |
+
n[1]['set_area_to_bounds'] = False
|
161 |
+
c.append(n)
|
162 |
+
return (c, )
|
163 |
+
|
164 |
+
class ConditioningSetAreaPercentage:
|
165 |
+
@classmethod
|
166 |
+
def INPUT_TYPES(s):
|
167 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
168 |
+
"width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
169 |
+
"height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
170 |
+
"x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
|
171 |
+
"y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
|
172 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
173 |
+
}}
|
174 |
+
RETURN_TYPES = ("CONDITIONING",)
|
175 |
+
FUNCTION = "append"
|
176 |
+
|
177 |
+
CATEGORY = "conditioning"
|
178 |
+
|
179 |
+
def append(self, conditioning, width, height, x, y, strength):
|
180 |
+
c = []
|
181 |
+
for t in conditioning:
|
182 |
+
n = [t[0], t[1].copy()]
|
183 |
+
n[1]['area'] = ("percentage", height, width, y, x)
|
184 |
+
n[1]['strength'] = strength
|
185 |
+
n[1]['set_area_to_bounds'] = False
|
186 |
+
c.append(n)
|
187 |
+
return (c, )
|
188 |
+
|
189 |
+
class ConditioningSetMask:
|
190 |
+
@classmethod
|
191 |
+
def INPUT_TYPES(s):
|
192 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
193 |
+
"mask": ("MASK", ),
|
194 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
195 |
+
"set_cond_area": (["default", "mask bounds"],),
|
196 |
+
}}
|
197 |
+
RETURN_TYPES = ("CONDITIONING",)
|
198 |
+
FUNCTION = "append"
|
199 |
+
|
200 |
+
CATEGORY = "conditioning"
|
201 |
+
|
202 |
+
def append(self, conditioning, mask, set_cond_area, strength):
|
203 |
+
c = []
|
204 |
+
set_area_to_bounds = False
|
205 |
+
if set_cond_area != "default":
|
206 |
+
set_area_to_bounds = True
|
207 |
+
if len(mask.shape) < 3:
|
208 |
+
mask = mask.unsqueeze(0)
|
209 |
+
for t in conditioning:
|
210 |
+
n = [t[0], t[1].copy()]
|
211 |
+
_, h, w = mask.shape
|
212 |
+
n[1]['mask'] = mask
|
213 |
+
n[1]['set_area_to_bounds'] = set_area_to_bounds
|
214 |
+
n[1]['mask_strength'] = strength
|
215 |
+
c.append(n)
|
216 |
+
return (c, )
|
217 |
+
|
218 |
+
class ConditioningZeroOut:
|
219 |
+
@classmethod
|
220 |
+
def INPUT_TYPES(s):
|
221 |
+
return {"required": {"conditioning": ("CONDITIONING", )}}
|
222 |
+
RETURN_TYPES = ("CONDITIONING",)
|
223 |
+
FUNCTION = "zero_out"
|
224 |
+
|
225 |
+
CATEGORY = "advanced/conditioning"
|
226 |
+
|
227 |
+
def zero_out(self, conditioning):
|
228 |
+
c = []
|
229 |
+
for t in conditioning:
|
230 |
+
d = t[1].copy()
|
231 |
+
if "pooled_output" in d:
|
232 |
+
d["pooled_output"] = torch.zeros_like(d["pooled_output"])
|
233 |
+
n = [torch.zeros_like(t[0]), d]
|
234 |
+
c.append(n)
|
235 |
+
return (c, )
|
236 |
+
|
237 |
+
class ConditioningSetTimestepRange:
|
238 |
+
@classmethod
|
239 |
+
def INPUT_TYPES(s):
|
240 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
241 |
+
"start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
242 |
+
"end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
|
243 |
+
}}
|
244 |
+
RETURN_TYPES = ("CONDITIONING",)
|
245 |
+
FUNCTION = "set_range"
|
246 |
+
|
247 |
+
CATEGORY = "advanced/conditioning"
|
248 |
+
|
249 |
+
def set_range(self, conditioning, start, end):
|
250 |
+
c = []
|
251 |
+
for t in conditioning:
|
252 |
+
d = t[1].copy()
|
253 |
+
d['start_percent'] = start
|
254 |
+
d['end_percent'] = end
|
255 |
+
n = [t[0], d]
|
256 |
+
c.append(n)
|
257 |
+
return (c, )
|
258 |
+
|
259 |
+
class VAEDecode:
|
260 |
+
@classmethod
|
261 |
+
def INPUT_TYPES(s):
|
262 |
+
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
|
263 |
+
RETURN_TYPES = ("IMAGE",)
|
264 |
+
FUNCTION = "decode"
|
265 |
+
|
266 |
+
CATEGORY = "latent"
|
267 |
+
|
268 |
+
def decode(self, vae, samples):
|
269 |
+
return (vae.decode(samples["samples"]), )
|
270 |
+
|
271 |
+
class VAEDecodeTiled:
|
272 |
+
@classmethod
|
273 |
+
def INPUT_TYPES(s):
|
274 |
+
return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
|
275 |
+
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
|
276 |
+
}}
|
277 |
+
RETURN_TYPES = ("IMAGE",)
|
278 |
+
FUNCTION = "decode"
|
279 |
+
|
280 |
+
CATEGORY = "_for_testing"
|
281 |
+
|
282 |
+
def decode(self, vae, samples, tile_size):
|
283 |
+
return (vae.decode_tiled(samples["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ), )
|
284 |
+
|
285 |
+
class VAEEncode:
|
286 |
+
@classmethod
|
287 |
+
def INPUT_TYPES(s):
|
288 |
+
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
|
289 |
+
RETURN_TYPES = ("LATENT",)
|
290 |
+
FUNCTION = "encode"
|
291 |
+
|
292 |
+
CATEGORY = "latent"
|
293 |
+
|
294 |
+
@staticmethod
|
295 |
+
def vae_encode_crop_pixels(pixels):
|
296 |
+
x = (pixels.shape[1] // 8) * 8
|
297 |
+
y = (pixels.shape[2] // 8) * 8
|
298 |
+
if pixels.shape[1] != x or pixels.shape[2] != y:
|
299 |
+
x_offset = (pixels.shape[1] % 8) // 2
|
300 |
+
y_offset = (pixels.shape[2] % 8) // 2
|
301 |
+
pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
|
302 |
+
return pixels
|
303 |
+
|
304 |
+
def encode(self, vae, pixels):
|
305 |
+
pixels = self.vae_encode_crop_pixels(pixels)
|
306 |
+
t = vae.encode(pixels[:,:,:,:3])
|
307 |
+
return ({"samples":t}, )
|
308 |
+
|
309 |
+
class VAEEncodeTiled:
|
310 |
+
@classmethod
|
311 |
+
def INPUT_TYPES(s):
|
312 |
+
return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
|
313 |
+
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64})
|
314 |
+
}}
|
315 |
+
RETURN_TYPES = ("LATENT",)
|
316 |
+
FUNCTION = "encode"
|
317 |
+
|
318 |
+
CATEGORY = "_for_testing"
|
319 |
+
|
320 |
+
def encode(self, vae, pixels, tile_size):
|
321 |
+
pixels = VAEEncode.vae_encode_crop_pixels(pixels)
|
322 |
+
t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, )
|
323 |
+
return ({"samples":t}, )
|
324 |
+
|
325 |
+
class VAEEncodeForInpaint:
|
326 |
+
@classmethod
|
327 |
+
def INPUT_TYPES(s):
|
328 |
+
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
|
329 |
+
RETURN_TYPES = ("LATENT",)
|
330 |
+
FUNCTION = "encode"
|
331 |
+
|
332 |
+
CATEGORY = "latent/inpaint"
|
333 |
+
|
334 |
+
def encode(self, vae, pixels, mask, grow_mask_by=6):
|
335 |
+
x = (pixels.shape[1] // 8) * 8
|
336 |
+
y = (pixels.shape[2] // 8) * 8
|
337 |
+
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
|
338 |
+
|
339 |
+
pixels = pixels.clone()
|
340 |
+
if pixels.shape[1] != x or pixels.shape[2] != y:
|
341 |
+
x_offset = (pixels.shape[1] % 8) // 2
|
342 |
+
y_offset = (pixels.shape[2] % 8) // 2
|
343 |
+
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
|
344 |
+
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
|
345 |
+
|
346 |
+
#grow mask by a few pixels to keep things seamless in latent space
|
347 |
+
if grow_mask_by == 0:
|
348 |
+
mask_erosion = mask
|
349 |
+
else:
|
350 |
+
kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
|
351 |
+
padding = math.ceil((grow_mask_by - 1) / 2)
|
352 |
+
|
353 |
+
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)
|
354 |
+
|
355 |
+
m = (1.0 - mask.round()).squeeze(1)
|
356 |
+
for i in range(3):
|
357 |
+
pixels[:,:,:,i] -= 0.5
|
358 |
+
pixels[:,:,:,i] *= m
|
359 |
+
pixels[:,:,:,i] += 0.5
|
360 |
+
t = vae.encode(pixels)
|
361 |
+
|
362 |
+
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
|
363 |
+
|
364 |
+
|
365 |
+
class InpaintModelConditioning:
|
366 |
+
@classmethod
|
367 |
+
def INPUT_TYPES(s):
|
368 |
+
return {"required": {"positive": ("CONDITIONING", ),
|
369 |
+
"negative": ("CONDITIONING", ),
|
370 |
+
"vae": ("VAE", ),
|
371 |
+
"pixels": ("IMAGE", ),
|
372 |
+
"mask": ("MASK", ),
|
373 |
+
}}
|
374 |
+
|
375 |
+
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
|
376 |
+
RETURN_NAMES = ("positive", "negative", "latent")
|
377 |
+
FUNCTION = "encode"
|
378 |
+
|
379 |
+
CATEGORY = "conditioning/inpaint"
|
380 |
+
|
381 |
+
def encode(self, positive, negative, pixels, vae, mask):
|
382 |
+
x = (pixels.shape[1] // 8) * 8
|
383 |
+
y = (pixels.shape[2] // 8) * 8
|
384 |
+
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
|
385 |
+
|
386 |
+
orig_pixels = pixels
|
387 |
+
pixels = orig_pixels.clone()
|
388 |
+
if pixels.shape[1] != x or pixels.shape[2] != y:
|
389 |
+
x_offset = (pixels.shape[1] % 8) // 2
|
390 |
+
y_offset = (pixels.shape[2] % 8) // 2
|
391 |
+
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
|
392 |
+
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
|
393 |
+
|
394 |
+
m = (1.0 - mask.round()).squeeze(1)
|
395 |
+
for i in range(3):
|
396 |
+
pixels[:,:,:,i] -= 0.5
|
397 |
+
pixels[:,:,:,i] *= m
|
398 |
+
pixels[:,:,:,i] += 0.5
|
399 |
+
concat_latent = vae.encode(pixels)
|
400 |
+
orig_latent = vae.encode(orig_pixels)
|
401 |
+
|
402 |
+
out_latent = {}
|
403 |
+
|
404 |
+
out_latent["samples"] = orig_latent
|
405 |
+
out_latent["noise_mask"] = mask
|
406 |
+
|
407 |
+
out = []
|
408 |
+
for conditioning in [positive, negative]:
|
409 |
+
c = []
|
410 |
+
for t in conditioning:
|
411 |
+
d = t[1].copy()
|
412 |
+
d["concat_latent_image"] = concat_latent
|
413 |
+
d["concat_mask"] = mask
|
414 |
+
n = [t[0], d]
|
415 |
+
c.append(n)
|
416 |
+
out.append(c)
|
417 |
+
return (out[0], out[1], out_latent)
|
418 |
+
|
419 |
+
|
420 |
+
class SaveLatent:
|
421 |
+
def __init__(self):
|
422 |
+
self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
|
423 |
+
|
424 |
+
@classmethod
|
425 |
+
def INPUT_TYPES(s):
|
426 |
+
return {"required": { "samples": ("LATENT", ),
|
427 |
+
"filename_prefix": ("STRING", {"default": "latents/ldm_patched"})},
|
428 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
429 |
+
}
|
430 |
+
RETURN_TYPES = ()
|
431 |
+
FUNCTION = "save"
|
432 |
+
|
433 |
+
OUTPUT_NODE = True
|
434 |
+
|
435 |
+
CATEGORY = "_for_testing"
|
436 |
+
|
437 |
+
def save(self, samples, filename_prefix="ldm_patched", prompt=None, extra_pnginfo=None):
|
438 |
+
full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, self.output_dir)
|
439 |
+
|
440 |
+
# support save metadata for latent sharing
|
441 |
+
prompt_info = ""
|
442 |
+
if prompt is not None:
|
443 |
+
prompt_info = json.dumps(prompt)
|
444 |
+
|
445 |
+
metadata = None
|
446 |
+
if not args.disable_server_info:
|
447 |
+
metadata = {"prompt": prompt_info}
|
448 |
+
if extra_pnginfo is not None:
|
449 |
+
for x in extra_pnginfo:
|
450 |
+
metadata[x] = json.dumps(extra_pnginfo[x])
|
451 |
+
|
452 |
+
file = f"{filename}_{counter:05}_.latent"
|
453 |
+
|
454 |
+
results = list()
|
455 |
+
results.append({
|
456 |
+
"filename": file,
|
457 |
+
"subfolder": subfolder,
|
458 |
+
"type": "output"
|
459 |
+
})
|
460 |
+
|
461 |
+
file = os.path.join(full_output_folder, file)
|
462 |
+
|
463 |
+
output = {}
|
464 |
+
output["latent_tensor"] = samples["samples"]
|
465 |
+
output["latent_format_version_0"] = torch.tensor([])
|
466 |
+
|
467 |
+
ldm_patched.modules.utils.save_torch_file(output, file, metadata=metadata)
|
468 |
+
return { "ui": { "latents": results } }
|
469 |
+
|
470 |
+
|
471 |
+
class LoadLatent:
|
472 |
+
@classmethod
|
473 |
+
def INPUT_TYPES(s):
|
474 |
+
input_dir = ldm_patched.utils.path_utils.get_input_directory()
|
475 |
+
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
|
476 |
+
return {"required": {"latent": [sorted(files), ]}, }
|
477 |
+
|
478 |
+
CATEGORY = "_for_testing"
|
479 |
+
|
480 |
+
RETURN_TYPES = ("LATENT", )
|
481 |
+
FUNCTION = "load"
|
482 |
+
|
483 |
+
def load(self, latent):
|
484 |
+
latent_path = ldm_patched.utils.path_utils.get_annotated_filepath(latent)
|
485 |
+
latent = safetensors.torch.load_file(latent_path, device="cpu")
|
486 |
+
multiplier = 1.0
|
487 |
+
if "latent_format_version_0" not in latent:
|
488 |
+
multiplier = 1.0 / 0.18215
|
489 |
+
samples = {"samples": latent["latent_tensor"].float() * multiplier}
|
490 |
+
return (samples, )
|
491 |
+
|
492 |
+
@classmethod
|
493 |
+
def IS_CHANGED(s, latent):
|
494 |
+
image_path = ldm_patched.utils.path_utils.get_annotated_filepath(latent)
|
495 |
+
m = hashlib.sha256()
|
496 |
+
with open(image_path, 'rb') as f:
|
497 |
+
m.update(f.read())
|
498 |
+
return m.digest().hex()
|
499 |
+
|
500 |
+
@classmethod
|
501 |
+
def VALIDATE_INPUTS(s, latent):
|
502 |
+
if not ldm_patched.utils.path_utils.exists_annotated_filepath(latent):
|
503 |
+
return "Invalid latent file: {}".format(latent)
|
504 |
+
return True
|
505 |
+
|
506 |
+
|
507 |
+
class CheckpointLoader:
|
508 |
+
@classmethod
|
509 |
+
def INPUT_TYPES(s):
|
510 |
+
return {"required": { "config_name": (ldm_patched.utils.path_utils.get_filename_list("configs"), ),
|
511 |
+
"ckpt_name": (ldm_patched.utils.path_utils.get_filename_list("checkpoints"), )}}
|
512 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
513 |
+
FUNCTION = "load_checkpoint"
|
514 |
+
|
515 |
+
CATEGORY = "advanced/loaders"
|
516 |
+
|
517 |
+
def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
|
518 |
+
config_path = ldm_patched.utils.path_utils.get_full_path("configs", config_name)
|
519 |
+
ckpt_path = ldm_patched.utils.path_utils.get_full_path("checkpoints", ckpt_name)
|
520 |
+
return ldm_patched.modules.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
|
521 |
+
|
522 |
+
class CheckpointLoaderSimple:
|
523 |
+
@classmethod
|
524 |
+
def INPUT_TYPES(s):
|
525 |
+
return {"required": { "ckpt_name": (ldm_patched.utils.path_utils.get_filename_list("checkpoints"), ),
|
526 |
+
}}
|
527 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
528 |
+
FUNCTION = "load_checkpoint"
|
529 |
+
|
530 |
+
CATEGORY = "loaders"
|
531 |
+
|
532 |
+
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
533 |
+
ckpt_path = ldm_patched.utils.path_utils.get_full_path("checkpoints", ckpt_name)
|
534 |
+
out = ldm_patched.modules.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
|
535 |
+
return out[:3]
|
536 |
+
|
537 |
+
class DiffusersLoader:
|
538 |
+
@classmethod
|
539 |
+
def INPUT_TYPES(cls):
|
540 |
+
paths = []
|
541 |
+
for search_path in ldm_patched.utils.path_utils.get_folder_paths("diffusers"):
|
542 |
+
if os.path.exists(search_path):
|
543 |
+
for root, subdir, files in os.walk(search_path, followlinks=True):
|
544 |
+
if "model_index.json" in files:
|
545 |
+
paths.append(os.path.relpath(root, start=search_path))
|
546 |
+
|
547 |
+
return {"required": {"model_path": (paths,), }}
|
548 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
549 |
+
FUNCTION = "load_checkpoint"
|
550 |
+
|
551 |
+
CATEGORY = "advanced/loaders/deprecated"
|
552 |
+
|
553 |
+
def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
|
554 |
+
for search_path in ldm_patched.utils.path_utils.get_folder_paths("diffusers"):
|
555 |
+
if os.path.exists(search_path):
|
556 |
+
path = os.path.join(search_path, model_path)
|
557 |
+
if os.path.exists(path):
|
558 |
+
model_path = path
|
559 |
+
break
|
560 |
+
|
561 |
+
return ldm_patched.modules.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
|
562 |
+
|
563 |
+
|
564 |
+
class unCLIPCheckpointLoader:
|
565 |
+
@classmethod
|
566 |
+
def INPUT_TYPES(s):
|
567 |
+
return {"required": { "ckpt_name": (ldm_patched.utils.path_utils.get_filename_list("checkpoints"), ),
|
568 |
+
}}
|
569 |
+
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
|
570 |
+
FUNCTION = "load_checkpoint"
|
571 |
+
|
572 |
+
CATEGORY = "loaders"
|
573 |
+
|
574 |
+
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
575 |
+
ckpt_path = ldm_patched.utils.path_utils.get_full_path("checkpoints", ckpt_name)
|
576 |
+
out = ldm_patched.modules.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
|
577 |
+
return out
|
578 |
+
|
579 |
+
class CLIPSetLastLayer:
|
580 |
+
@classmethod
|
581 |
+
def INPUT_TYPES(s):
|
582 |
+
return {"required": { "clip": ("CLIP", ),
|
583 |
+
"stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
|
584 |
+
}}
|
585 |
+
RETURN_TYPES = ("CLIP",)
|
586 |
+
FUNCTION = "set_last_layer"
|
587 |
+
|
588 |
+
CATEGORY = "conditioning"
|
589 |
+
|
590 |
+
def set_last_layer(self, clip, stop_at_clip_layer):
|
591 |
+
clip = clip.clone()
|
592 |
+
clip.clip_layer(stop_at_clip_layer)
|
593 |
+
return (clip,)
|
594 |
+
|
595 |
+
class LoraLoader:
|
596 |
+
def __init__(self):
|
597 |
+
self.loaded_lora = None
|
598 |
+
|
599 |
+
@classmethod
|
600 |
+
def INPUT_TYPES(s):
|
601 |
+
return {"required": { "model": ("MODEL",),
|
602 |
+
"clip": ("CLIP", ),
|
603 |
+
"lora_name": (ldm_patched.utils.path_utils.get_filename_list("loras"), ),
|
604 |
+
"strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
|
605 |
+
"strength_clip": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
|
606 |
+
}}
|
607 |
+
RETURN_TYPES = ("MODEL", "CLIP")
|
608 |
+
FUNCTION = "load_lora"
|
609 |
+
|
610 |
+
CATEGORY = "loaders"
|
611 |
+
|
612 |
+
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
|
613 |
+
if strength_model == 0 and strength_clip == 0:
|
614 |
+
return (model, clip)
|
615 |
+
|
616 |
+
lora_path = ldm_patched.utils.path_utils.get_full_path("loras", lora_name)
|
617 |
+
lora = None
|
618 |
+
if self.loaded_lora is not None:
|
619 |
+
if self.loaded_lora[0] == lora_path:
|
620 |
+
lora = self.loaded_lora[1]
|
621 |
+
else:
|
622 |
+
temp = self.loaded_lora
|
623 |
+
self.loaded_lora = None
|
624 |
+
del temp
|
625 |
+
|
626 |
+
if lora is None:
|
627 |
+
lora = ldm_patched.modules.utils.load_torch_file(lora_path, safe_load=True)
|
628 |
+
self.loaded_lora = (lora_path, lora)
|
629 |
+
|
630 |
+
model_lora, clip_lora = ldm_patched.modules.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
|
631 |
+
return (model_lora, clip_lora)
|
632 |
+
|
633 |
+
class LoraLoaderModelOnly(LoraLoader):
|
634 |
+
@classmethod
|
635 |
+
def INPUT_TYPES(s):
|
636 |
+
return {"required": { "model": ("MODEL",),
|
637 |
+
"lora_name": (ldm_patched.utils.path_utils.get_filename_list("loras"), ),
|
638 |
+
"strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
|
639 |
+
}}
|
640 |
+
RETURN_TYPES = ("MODEL",)
|
641 |
+
FUNCTION = "load_lora_model_only"
|
642 |
+
|
643 |
+
def load_lora_model_only(self, model, lora_name, strength_model):
|
644 |
+
return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)
|
645 |
+
|
646 |
+
class VAELoader:
|
647 |
+
@staticmethod
|
648 |
+
def vae_list():
|
649 |
+
vaes = ldm_patched.utils.path_utils.get_filename_list("vae")
|
650 |
+
approx_vaes = ldm_patched.utils.path_utils.get_filename_list("vae_approx")
|
651 |
+
sdxl_taesd_enc = False
|
652 |
+
sdxl_taesd_dec = False
|
653 |
+
sd1_taesd_enc = False
|
654 |
+
sd1_taesd_dec = False
|
655 |
+
|
656 |
+
for v in approx_vaes:
|
657 |
+
if v.startswith("taesd_decoder."):
|
658 |
+
sd1_taesd_dec = True
|
659 |
+
elif v.startswith("taesd_encoder."):
|
660 |
+
sd1_taesd_enc = True
|
661 |
+
elif v.startswith("taesdxl_decoder."):
|
662 |
+
sdxl_taesd_dec = True
|
663 |
+
elif v.startswith("taesdxl_encoder."):
|
664 |
+
sdxl_taesd_enc = True
|
665 |
+
if sd1_taesd_dec and sd1_taesd_enc:
|
666 |
+
vaes.append("taesd")
|
667 |
+
if sdxl_taesd_dec and sdxl_taesd_enc:
|
668 |
+
vaes.append("taesdxl")
|
669 |
+
return vaes
|
670 |
+
|
671 |
+
@staticmethod
|
672 |
+
def load_taesd(name):
|
673 |
+
sd = {}
|
674 |
+
approx_vaes = ldm_patched.utils.path_utils.get_filename_list("vae_approx")
|
675 |
+
|
676 |
+
encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
|
677 |
+
decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))
|
678 |
+
|
679 |
+
enc = ldm_patched.modules.utils.load_torch_file(ldm_patched.utils.path_utils.get_full_path("vae_approx", encoder))
|
680 |
+
for k in enc:
|
681 |
+
sd["taesd_encoder.{}".format(k)] = enc[k]
|
682 |
+
|
683 |
+
dec = ldm_patched.modules.utils.load_torch_file(ldm_patched.utils.path_utils.get_full_path("vae_approx", decoder))
|
684 |
+
for k in dec:
|
685 |
+
sd["taesd_decoder.{}".format(k)] = dec[k]
|
686 |
+
|
687 |
+
if name == "taesd":
|
688 |
+
sd["vae_scale"] = torch.tensor(0.18215)
|
689 |
+
elif name == "taesdxl":
|
690 |
+
sd["vae_scale"] = torch.tensor(0.13025)
|
691 |
+
return sd
|
692 |
+
|
693 |
+
@classmethod
|
694 |
+
def INPUT_TYPES(s):
|
695 |
+
return {"required": { "vae_name": (s.vae_list(), )}}
|
696 |
+
RETURN_TYPES = ("VAE",)
|
697 |
+
FUNCTION = "load_vae"
|
698 |
+
|
699 |
+
CATEGORY = "loaders"
|
700 |
+
|
701 |
+
#TODO: scale factor?
|
702 |
+
def load_vae(self, vae_name):
|
703 |
+
if vae_name in ["taesd", "taesdxl"]:
|
704 |
+
sd = self.load_taesd(vae_name)
|
705 |
+
else:
|
706 |
+
vae_path = ldm_patched.utils.path_utils.get_full_path("vae", vae_name)
|
707 |
+
sd = ldm_patched.modules.utils.load_torch_file(vae_path)
|
708 |
+
vae = ldm_patched.modules.sd.VAE(sd=sd)
|
709 |
+
return (vae,)
|
710 |
+
|
711 |
+
class ControlNetLoader:
|
712 |
+
@classmethod
|
713 |
+
def INPUT_TYPES(s):
|
714 |
+
return {"required": { "control_net_name": (ldm_patched.utils.path_utils.get_filename_list("controlnet"), )}}
|
715 |
+
|
716 |
+
RETURN_TYPES = ("CONTROL_NET",)
|
717 |
+
FUNCTION = "load_controlnet"
|
718 |
+
|
719 |
+
CATEGORY = "loaders"
|
720 |
+
|
721 |
+
def load_controlnet(self, control_net_name):
|
722 |
+
controlnet_path = ldm_patched.utils.path_utils.get_full_path("controlnet", control_net_name)
|
723 |
+
controlnet = ldm_patched.modules.controlnet.load_controlnet(controlnet_path)
|
724 |
+
return (controlnet,)
|
725 |
+
|
726 |
+
class DiffControlNetLoader:
|
727 |
+
@classmethod
|
728 |
+
def INPUT_TYPES(s):
|
729 |
+
return {"required": { "model": ("MODEL",),
|
730 |
+
"control_net_name": (ldm_patched.utils.path_utils.get_filename_list("controlnet"), )}}
|
731 |
+
|
732 |
+
RETURN_TYPES = ("CONTROL_NET",)
|
733 |
+
FUNCTION = "load_controlnet"
|
734 |
+
|
735 |
+
CATEGORY = "loaders"
|
736 |
+
|
737 |
+
def load_controlnet(self, model, control_net_name):
|
738 |
+
controlnet_path = ldm_patched.utils.path_utils.get_full_path("controlnet", control_net_name)
|
739 |
+
controlnet = ldm_patched.modules.controlnet.load_controlnet(controlnet_path, model)
|
740 |
+
return (controlnet,)
|
741 |
+
|
742 |
+
|
743 |
+
class ControlNetApply:
|
744 |
+
@classmethod
|
745 |
+
def INPUT_TYPES(s):
|
746 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
747 |
+
"control_net": ("CONTROL_NET", ),
|
748 |
+
"image": ("IMAGE", ),
|
749 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
|
750 |
+
}}
|
751 |
+
RETURN_TYPES = ("CONDITIONING",)
|
752 |
+
FUNCTION = "apply_controlnet"
|
753 |
+
|
754 |
+
CATEGORY = "conditioning"
|
755 |
+
|
756 |
+
def apply_controlnet(self, conditioning, control_net, image, strength):
|
757 |
+
if strength == 0:
|
758 |
+
return (conditioning, )
|
759 |
+
|
760 |
+
c = []
|
761 |
+
control_hint = image.movedim(-1,1)
|
762 |
+
for t in conditioning:
|
763 |
+
n = [t[0], t[1].copy()]
|
764 |
+
c_net = control_net.copy().set_cond_hint(control_hint, strength)
|
765 |
+
if 'control' in t[1]:
|
766 |
+
c_net.set_previous_controlnet(t[1]['control'])
|
767 |
+
n[1]['control'] = c_net
|
768 |
+
n[1]['control_apply_to_uncond'] = True
|
769 |
+
c.append(n)
|
770 |
+
return (c, )
|
771 |
+
|
772 |
+
|
773 |
+
class ControlNetApplyAdvanced:
|
774 |
+
@classmethod
|
775 |
+
def INPUT_TYPES(s):
|
776 |
+
return {"required": {"positive": ("CONDITIONING", ),
|
777 |
+
"negative": ("CONDITIONING", ),
|
778 |
+
"control_net": ("CONTROL_NET", ),
|
779 |
+
"image": ("IMAGE", ),
|
780 |
+
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
781 |
+
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
782 |
+
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
|
783 |
+
}}
|
784 |
+
|
785 |
+
RETURN_TYPES = ("CONDITIONING","CONDITIONING")
|
786 |
+
RETURN_NAMES = ("positive", "negative")
|
787 |
+
FUNCTION = "apply_controlnet"
|
788 |
+
|
789 |
+
CATEGORY = "conditioning"
|
790 |
+
|
791 |
+
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent):
|
792 |
+
if strength == 0:
|
793 |
+
return (positive, negative)
|
794 |
+
|
795 |
+
control_hint = image.movedim(-1,1)
|
796 |
+
cnets = {}
|
797 |
+
|
798 |
+
out = []
|
799 |
+
for conditioning in [positive, negative]:
|
800 |
+
c = []
|
801 |
+
for t in conditioning:
|
802 |
+
d = t[1].copy()
|
803 |
+
|
804 |
+
prev_cnet = d.get('control', None)
|
805 |
+
if prev_cnet in cnets:
|
806 |
+
c_net = cnets[prev_cnet]
|
807 |
+
else:
|
808 |
+
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent))
|
809 |
+
c_net.set_previous_controlnet(prev_cnet)
|
810 |
+
cnets[prev_cnet] = c_net
|
811 |
+
|
812 |
+
d['control'] = c_net
|
813 |
+
d['control_apply_to_uncond'] = False
|
814 |
+
n = [t[0], d]
|
815 |
+
c.append(n)
|
816 |
+
out.append(c)
|
817 |
+
return (out[0], out[1])
|
818 |
+
|
819 |
+
|
820 |
+
class UNETLoader:
|
821 |
+
@classmethod
|
822 |
+
def INPUT_TYPES(s):
|
823 |
+
return {"required": { "unet_name": (ldm_patched.utils.path_utils.get_filename_list("unet"), ),
|
824 |
+
}}
|
825 |
+
RETURN_TYPES = ("MODEL",)
|
826 |
+
FUNCTION = "load_unet"
|
827 |
+
|
828 |
+
CATEGORY = "advanced/loaders"
|
829 |
+
|
830 |
+
def load_unet(self, unet_name):
|
831 |
+
unet_path = ldm_patched.utils.path_utils.get_full_path("unet", unet_name)
|
832 |
+
model = ldm_patched.modules.sd.load_unet(unet_path)
|
833 |
+
return (model,)
|
834 |
+
|
835 |
+
class CLIPLoader:
|
836 |
+
@classmethod
|
837 |
+
def INPUT_TYPES(s):
|
838 |
+
return {"required": { "clip_name": (ldm_patched.utils.path_utils.get_filename_list("clip"), ),
|
839 |
+
}}
|
840 |
+
RETURN_TYPES = ("CLIP",)
|
841 |
+
FUNCTION = "load_clip"
|
842 |
+
|
843 |
+
CATEGORY = "advanced/loaders"
|
844 |
+
|
845 |
+
def load_clip(self, clip_name):
|
846 |
+
clip_path = ldm_patched.utils.path_utils.get_full_path("clip", clip_name)
|
847 |
+
clip = ldm_patched.modules.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
|
848 |
+
return (clip,)
|
849 |
+
|
850 |
+
class DualCLIPLoader:
|
851 |
+
@classmethod
|
852 |
+
def INPUT_TYPES(s):
|
853 |
+
return {"required": { "clip_name1": (ldm_patched.utils.path_utils.get_filename_list("clip"), ), "clip_name2": (ldm_patched.utils.path_utils.get_filename_list("clip"), ),
|
854 |
+
}}
|
855 |
+
RETURN_TYPES = ("CLIP",)
|
856 |
+
FUNCTION = "load_clip"
|
857 |
+
|
858 |
+
CATEGORY = "advanced/loaders"
|
859 |
+
|
860 |
+
def load_clip(self, clip_name1, clip_name2):
|
861 |
+
clip_path1 = ldm_patched.utils.path_utils.get_full_path("clip", clip_name1)
|
862 |
+
clip_path2 = ldm_patched.utils.path_utils.get_full_path("clip", clip_name2)
|
863 |
+
clip = ldm_patched.modules.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
|
864 |
+
return (clip,)
|
865 |
+
|
866 |
+
class CLIPVisionLoader:
|
867 |
+
@classmethod
|
868 |
+
def INPUT_TYPES(s):
|
869 |
+
return {"required": { "clip_name": (ldm_patched.utils.path_utils.get_filename_list("clip_vision"), ),
|
870 |
+
}}
|
871 |
+
RETURN_TYPES = ("CLIP_VISION",)
|
872 |
+
FUNCTION = "load_clip"
|
873 |
+
|
874 |
+
CATEGORY = "loaders"
|
875 |
+
|
876 |
+
def load_clip(self, clip_name):
|
877 |
+
clip_path = ldm_patched.utils.path_utils.get_full_path("clip_vision", clip_name)
|
878 |
+
clip_vision = ldm_patched.modules.clip_vision.load(clip_path)
|
879 |
+
return (clip_vision,)
|
880 |
+
|
881 |
+
class CLIPVisionEncode:
|
882 |
+
@classmethod
|
883 |
+
def INPUT_TYPES(s):
|
884 |
+
return {"required": { "clip_vision": ("CLIP_VISION",),
|
885 |
+
"image": ("IMAGE",)
|
886 |
+
}}
|
887 |
+
RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
|
888 |
+
FUNCTION = "encode"
|
889 |
+
|
890 |
+
CATEGORY = "conditioning"
|
891 |
+
|
892 |
+
def encode(self, clip_vision, image):
|
893 |
+
output = clip_vision.encode_image(image)
|
894 |
+
return (output,)
|
895 |
+
|
896 |
+
class StyleModelLoader:
|
897 |
+
@classmethod
|
898 |
+
def INPUT_TYPES(s):
|
899 |
+
return {"required": { "style_model_name": (ldm_patched.utils.path_utils.get_filename_list("style_models"), )}}
|
900 |
+
|
901 |
+
RETURN_TYPES = ("STYLE_MODEL",)
|
902 |
+
FUNCTION = "load_style_model"
|
903 |
+
|
904 |
+
CATEGORY = "loaders"
|
905 |
+
|
906 |
+
def load_style_model(self, style_model_name):
|
907 |
+
style_model_path = ldm_patched.utils.path_utils.get_full_path("style_models", style_model_name)
|
908 |
+
style_model = ldm_patched.modules.sd.load_style_model(style_model_path)
|
909 |
+
return (style_model,)
|
910 |
+
|
911 |
+
|
912 |
+
class StyleModelApply:
|
913 |
+
@classmethod
|
914 |
+
def INPUT_TYPES(s):
|
915 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
916 |
+
"style_model": ("STYLE_MODEL", ),
|
917 |
+
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
918 |
+
}}
|
919 |
+
RETURN_TYPES = ("CONDITIONING",)
|
920 |
+
FUNCTION = "apply_stylemodel"
|
921 |
+
|
922 |
+
CATEGORY = "conditioning/style_model"
|
923 |
+
|
924 |
+
def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
|
925 |
+
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
|
926 |
+
c = []
|
927 |
+
for t in conditioning:
|
928 |
+
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
|
929 |
+
c.append(n)
|
930 |
+
return (c, )
|
931 |
+
|
932 |
+
class unCLIPConditioning:
|
933 |
+
@classmethod
|
934 |
+
def INPUT_TYPES(s):
|
935 |
+
return {"required": {"conditioning": ("CONDITIONING", ),
|
936 |
+
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
937 |
+
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
938 |
+
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
939 |
+
}}
|
940 |
+
RETURN_TYPES = ("CONDITIONING",)
|
941 |
+
FUNCTION = "apply_adm"
|
942 |
+
|
943 |
+
CATEGORY = "conditioning"
|
944 |
+
|
945 |
+
def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
|
946 |
+
if strength == 0:
|
947 |
+
return (conditioning, )
|
948 |
+
|
949 |
+
c = []
|
950 |
+
for t in conditioning:
|
951 |
+
o = t[1].copy()
|
952 |
+
x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
|
953 |
+
if "unclip_conditioning" in o:
|
954 |
+
o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
|
955 |
+
else:
|
956 |
+
o["unclip_conditioning"] = [x]
|
957 |
+
n = [t[0], o]
|
958 |
+
c.append(n)
|
959 |
+
return (c, )
|
960 |
+
|
961 |
+
class GLIGENLoader:
|
962 |
+
@classmethod
|
963 |
+
def INPUT_TYPES(s):
|
964 |
+
return {"required": { "gligen_name": (ldm_patched.utils.path_utils.get_filename_list("gligen"), )}}
|
965 |
+
|
966 |
+
RETURN_TYPES = ("GLIGEN",)
|
967 |
+
FUNCTION = "load_gligen"
|
968 |
+
|
969 |
+
CATEGORY = "loaders"
|
970 |
+
|
971 |
+
def load_gligen(self, gligen_name):
|
972 |
+
gligen_path = ldm_patched.utils.path_utils.get_full_path("gligen", gligen_name)
|
973 |
+
gligen = ldm_patched.modules.sd.load_gligen(gligen_path)
|
974 |
+
return (gligen,)
|
975 |
+
|
976 |
+
class GLIGENTextBoxApply:
|
977 |
+
@classmethod
|
978 |
+
def INPUT_TYPES(s):
|
979 |
+
return {"required": {"conditioning_to": ("CONDITIONING", ),
|
980 |
+
"clip": ("CLIP", ),
|
981 |
+
"gligen_textbox_model": ("GLIGEN", ),
|
982 |
+
"text": ("STRING", {"multiline": True}),
|
983 |
+
"width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
|
984 |
+
"height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
|
985 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
986 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
987 |
+
}}
|
988 |
+
RETURN_TYPES = ("CONDITIONING",)
|
989 |
+
FUNCTION = "append"
|
990 |
+
|
991 |
+
CATEGORY = "conditioning/gligen"
|
992 |
+
|
993 |
+
def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
|
994 |
+
c = []
|
995 |
+
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
|
996 |
+
for t in conditioning_to:
|
997 |
+
n = [t[0], t[1].copy()]
|
998 |
+
position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
|
999 |
+
prev = []
|
1000 |
+
if "gligen" in n[1]:
|
1001 |
+
prev = n[1]['gligen'][2]
|
1002 |
+
|
1003 |
+
n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
|
1004 |
+
c.append(n)
|
1005 |
+
return (c, )
|
1006 |
+
|
1007 |
+
class EmptyLatentImage:
|
1008 |
+
def __init__(self):
|
1009 |
+
self.device = ldm_patched.modules.model_management.intermediate_device()
|
1010 |
+
|
1011 |
+
@classmethod
|
1012 |
+
def INPUT_TYPES(s):
|
1013 |
+
return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
|
1014 |
+
"height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
|
1015 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
|
1016 |
+
RETURN_TYPES = ("LATENT",)
|
1017 |
+
FUNCTION = "generate"
|
1018 |
+
|
1019 |
+
CATEGORY = "latent"
|
1020 |
+
|
1021 |
+
def generate(self, width, height, batch_size=1):
|
1022 |
+
latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
|
1023 |
+
return ({"samples":latent}, )
|
1024 |
+
|
1025 |
+
|
1026 |
+
class LatentFromBatch:
|
1027 |
+
@classmethod
|
1028 |
+
def INPUT_TYPES(s):
|
1029 |
+
return {"required": { "samples": ("LATENT",),
|
1030 |
+
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
|
1031 |
+
"length": ("INT", {"default": 1, "min": 1, "max": 64}),
|
1032 |
+
}}
|
1033 |
+
RETURN_TYPES = ("LATENT",)
|
1034 |
+
FUNCTION = "frombatch"
|
1035 |
+
|
1036 |
+
CATEGORY = "latent/batch"
|
1037 |
+
|
1038 |
+
def frombatch(self, samples, batch_index, length):
|
1039 |
+
s = samples.copy()
|
1040 |
+
s_in = samples["samples"]
|
1041 |
+
batch_index = min(s_in.shape[0] - 1, batch_index)
|
1042 |
+
length = min(s_in.shape[0] - batch_index, length)
|
1043 |
+
s["samples"] = s_in[batch_index:batch_index + length].clone()
|
1044 |
+
if "noise_mask" in samples:
|
1045 |
+
masks = samples["noise_mask"]
|
1046 |
+
if masks.shape[0] == 1:
|
1047 |
+
s["noise_mask"] = masks.clone()
|
1048 |
+
else:
|
1049 |
+
if masks.shape[0] < s_in.shape[0]:
|
1050 |
+
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
|
1051 |
+
s["noise_mask"] = masks[batch_index:batch_index + length].clone()
|
1052 |
+
if "batch_index" not in s:
|
1053 |
+
s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
|
1054 |
+
else:
|
1055 |
+
s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
|
1056 |
+
return (s,)
|
1057 |
+
|
1058 |
+
class RepeatLatentBatch:
|
1059 |
+
@classmethod
|
1060 |
+
def INPUT_TYPES(s):
|
1061 |
+
return {"required": { "samples": ("LATENT",),
|
1062 |
+
"amount": ("INT", {"default": 1, "min": 1, "max": 64}),
|
1063 |
+
}}
|
1064 |
+
RETURN_TYPES = ("LATENT",)
|
1065 |
+
FUNCTION = "repeat"
|
1066 |
+
|
1067 |
+
CATEGORY = "latent/batch"
|
1068 |
+
|
1069 |
+
def repeat(self, samples, amount):
|
1070 |
+
s = samples.copy()
|
1071 |
+
s_in = samples["samples"]
|
1072 |
+
|
1073 |
+
s["samples"] = s_in.repeat((amount, 1,1,1))
|
1074 |
+
if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
|
1075 |
+
masks = samples["noise_mask"]
|
1076 |
+
if masks.shape[0] < s_in.shape[0]:
|
1077 |
+
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
|
1078 |
+
s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
|
1079 |
+
if "batch_index" in s:
|
1080 |
+
offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
|
1081 |
+
s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
|
1082 |
+
return (s,)
|
1083 |
+
|
1084 |
+
class LatentUpscale:
|
1085 |
+
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
|
1086 |
+
crop_methods = ["disabled", "center"]
|
1087 |
+
|
1088 |
+
@classmethod
|
1089 |
+
def INPUT_TYPES(s):
|
1090 |
+
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
|
1091 |
+
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1092 |
+
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1093 |
+
"crop": (s.crop_methods,)}}
|
1094 |
+
RETURN_TYPES = ("LATENT",)
|
1095 |
+
FUNCTION = "upscale"
|
1096 |
+
|
1097 |
+
CATEGORY = "latent"
|
1098 |
+
|
1099 |
+
def upscale(self, samples, upscale_method, width, height, crop):
|
1100 |
+
if width == 0 and height == 0:
|
1101 |
+
s = samples
|
1102 |
+
else:
|
1103 |
+
s = samples.copy()
|
1104 |
+
|
1105 |
+
if width == 0:
|
1106 |
+
height = max(64, height)
|
1107 |
+
width = max(64, round(samples["samples"].shape[3] * height / samples["samples"].shape[2]))
|
1108 |
+
elif height == 0:
|
1109 |
+
width = max(64, width)
|
1110 |
+
height = max(64, round(samples["samples"].shape[2] * width / samples["samples"].shape[3]))
|
1111 |
+
else:
|
1112 |
+
width = max(64, width)
|
1113 |
+
height = max(64, height)
|
1114 |
+
|
1115 |
+
s["samples"] = ldm_patched.modules.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
|
1116 |
+
return (s,)
|
1117 |
+
|
1118 |
+
class LatentUpscaleBy:
|
1119 |
+
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
|
1120 |
+
|
1121 |
+
@classmethod
|
1122 |
+
def INPUT_TYPES(s):
|
1123 |
+
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
|
1124 |
+
"scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
|
1125 |
+
RETURN_TYPES = ("LATENT",)
|
1126 |
+
FUNCTION = "upscale"
|
1127 |
+
|
1128 |
+
CATEGORY = "latent"
|
1129 |
+
|
1130 |
+
def upscale(self, samples, upscale_method, scale_by):
|
1131 |
+
s = samples.copy()
|
1132 |
+
width = round(samples["samples"].shape[3] * scale_by)
|
1133 |
+
height = round(samples["samples"].shape[2] * scale_by)
|
1134 |
+
s["samples"] = ldm_patched.modules.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
|
1135 |
+
return (s,)
|
1136 |
+
|
1137 |
+
class LatentRotate:
|
1138 |
+
@classmethod
|
1139 |
+
def INPUT_TYPES(s):
|
1140 |
+
return {"required": { "samples": ("LATENT",),
|
1141 |
+
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
|
1142 |
+
}}
|
1143 |
+
RETURN_TYPES = ("LATENT",)
|
1144 |
+
FUNCTION = "rotate"
|
1145 |
+
|
1146 |
+
CATEGORY = "latent/transform"
|
1147 |
+
|
1148 |
+
def rotate(self, samples, rotation):
|
1149 |
+
s = samples.copy()
|
1150 |
+
rotate_by = 0
|
1151 |
+
if rotation.startswith("90"):
|
1152 |
+
rotate_by = 1
|
1153 |
+
elif rotation.startswith("180"):
|
1154 |
+
rotate_by = 2
|
1155 |
+
elif rotation.startswith("270"):
|
1156 |
+
rotate_by = 3
|
1157 |
+
|
1158 |
+
s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
|
1159 |
+
return (s,)
|
1160 |
+
|
1161 |
+
class LatentFlip:
|
1162 |
+
@classmethod
|
1163 |
+
def INPUT_TYPES(s):
|
1164 |
+
return {"required": { "samples": ("LATENT",),
|
1165 |
+
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
|
1166 |
+
}}
|
1167 |
+
RETURN_TYPES = ("LATENT",)
|
1168 |
+
FUNCTION = "flip"
|
1169 |
+
|
1170 |
+
CATEGORY = "latent/transform"
|
1171 |
+
|
1172 |
+
def flip(self, samples, flip_method):
|
1173 |
+
s = samples.copy()
|
1174 |
+
if flip_method.startswith("x"):
|
1175 |
+
s["samples"] = torch.flip(samples["samples"], dims=[2])
|
1176 |
+
elif flip_method.startswith("y"):
|
1177 |
+
s["samples"] = torch.flip(samples["samples"], dims=[3])
|
1178 |
+
|
1179 |
+
return (s,)
|
1180 |
+
|
1181 |
+
class LatentComposite:
|
1182 |
+
@classmethod
|
1183 |
+
def INPUT_TYPES(s):
|
1184 |
+
return {"required": { "samples_to": ("LATENT",),
|
1185 |
+
"samples_from": ("LATENT",),
|
1186 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1187 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1188 |
+
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1189 |
+
}}
|
1190 |
+
RETURN_TYPES = ("LATENT",)
|
1191 |
+
FUNCTION = "composite"
|
1192 |
+
|
1193 |
+
CATEGORY = "latent"
|
1194 |
+
|
1195 |
+
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
|
1196 |
+
x = x // 8
|
1197 |
+
y = y // 8
|
1198 |
+
feather = feather // 8
|
1199 |
+
samples_out = samples_to.copy()
|
1200 |
+
s = samples_to["samples"].clone()
|
1201 |
+
samples_to = samples_to["samples"]
|
1202 |
+
samples_from = samples_from["samples"]
|
1203 |
+
if feather == 0:
|
1204 |
+
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
1205 |
+
else:
|
1206 |
+
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
1207 |
+
mask = torch.ones_like(samples_from)
|
1208 |
+
for t in range(feather):
|
1209 |
+
if y != 0:
|
1210 |
+
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
|
1211 |
+
|
1212 |
+
if y + samples_from.shape[2] < samples_to.shape[2]:
|
1213 |
+
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
|
1214 |
+
if x != 0:
|
1215 |
+
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
|
1216 |
+
if x + samples_from.shape[3] < samples_to.shape[3]:
|
1217 |
+
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
|
1218 |
+
rev_mask = torch.ones_like(mask) - mask
|
1219 |
+
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
|
1220 |
+
samples_out["samples"] = s
|
1221 |
+
return (samples_out,)
|
1222 |
+
|
1223 |
+
class LatentBlend:
|
1224 |
+
@classmethod
|
1225 |
+
def INPUT_TYPES(s):
|
1226 |
+
return {"required": {
|
1227 |
+
"samples1": ("LATENT",),
|
1228 |
+
"samples2": ("LATENT",),
|
1229 |
+
"blend_factor": ("FLOAT", {
|
1230 |
+
"default": 0.5,
|
1231 |
+
"min": 0,
|
1232 |
+
"max": 1,
|
1233 |
+
"step": 0.01
|
1234 |
+
}),
|
1235 |
+
}}
|
1236 |
+
|
1237 |
+
RETURN_TYPES = ("LATENT",)
|
1238 |
+
FUNCTION = "blend"
|
1239 |
+
|
1240 |
+
CATEGORY = "_for_testing"
|
1241 |
+
|
1242 |
+
def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
|
1243 |
+
|
1244 |
+
samples_out = samples1.copy()
|
1245 |
+
samples1 = samples1["samples"]
|
1246 |
+
samples2 = samples2["samples"]
|
1247 |
+
|
1248 |
+
if samples1.shape != samples2.shape:
|
1249 |
+
samples2.permute(0, 3, 1, 2)
|
1250 |
+
samples2 = ldm_patched.modules.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
|
1251 |
+
samples2.permute(0, 2, 3, 1)
|
1252 |
+
|
1253 |
+
samples_blended = self.blend_mode(samples1, samples2, blend_mode)
|
1254 |
+
samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
|
1255 |
+
samples_out["samples"] = samples_blended
|
1256 |
+
return (samples_out,)
|
1257 |
+
|
1258 |
+
def blend_mode(self, img1, img2, mode):
|
1259 |
+
if mode == "normal":
|
1260 |
+
return img2
|
1261 |
+
else:
|
1262 |
+
raise ValueError(f"Unsupported blend mode: {mode}")
|
1263 |
+
|
1264 |
+
class LatentCrop:
|
1265 |
+
@classmethod
|
1266 |
+
def INPUT_TYPES(s):
|
1267 |
+
return {"required": { "samples": ("LATENT",),
|
1268 |
+
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
1269 |
+
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
1270 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1271 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1272 |
+
}}
|
1273 |
+
RETURN_TYPES = ("LATENT",)
|
1274 |
+
FUNCTION = "crop"
|
1275 |
+
|
1276 |
+
CATEGORY = "latent/transform"
|
1277 |
+
|
1278 |
+
def crop(self, samples, width, height, x, y):
|
1279 |
+
s = samples.copy()
|
1280 |
+
samples = samples['samples']
|
1281 |
+
x = x // 8
|
1282 |
+
y = y // 8
|
1283 |
+
|
1284 |
+
#enfonce minimum size of 64
|
1285 |
+
if x > (samples.shape[3] - 8):
|
1286 |
+
x = samples.shape[3] - 8
|
1287 |
+
if y > (samples.shape[2] - 8):
|
1288 |
+
y = samples.shape[2] - 8
|
1289 |
+
|
1290 |
+
new_height = height // 8
|
1291 |
+
new_width = width // 8
|
1292 |
+
to_x = new_width + x
|
1293 |
+
to_y = new_height + y
|
1294 |
+
s['samples'] = samples[:,:,y:to_y, x:to_x]
|
1295 |
+
return (s,)
|
1296 |
+
|
1297 |
+
class SetLatentNoiseMask:
|
1298 |
+
@classmethod
|
1299 |
+
def INPUT_TYPES(s):
|
1300 |
+
return {"required": { "samples": ("LATENT",),
|
1301 |
+
"mask": ("MASK",),
|
1302 |
+
}}
|
1303 |
+
RETURN_TYPES = ("LATENT",)
|
1304 |
+
FUNCTION = "set_mask"
|
1305 |
+
|
1306 |
+
CATEGORY = "latent/inpaint"
|
1307 |
+
|
1308 |
+
def set_mask(self, samples, mask):
|
1309 |
+
s = samples.copy()
|
1310 |
+
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
|
1311 |
+
return (s,)
|
1312 |
+
|
1313 |
+
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
1314 |
+
latent_image = latent["samples"]
|
1315 |
+
if disable_noise:
|
1316 |
+
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
1317 |
+
else:
|
1318 |
+
batch_inds = latent["batch_index"] if "batch_index" in latent else None
|
1319 |
+
noise = ldm_patched.modules.sample.prepare_noise(latent_image, seed, batch_inds)
|
1320 |
+
|
1321 |
+
noise_mask = None
|
1322 |
+
if "noise_mask" in latent:
|
1323 |
+
noise_mask = latent["noise_mask"]
|
1324 |
+
|
1325 |
+
callback = ldm_patched.utils.latent_visualization.prepare_callback(model, steps)
|
1326 |
+
disable_pbar = not ldm_patched.modules.utils.PROGRESS_BAR_ENABLED
|
1327 |
+
samples = ldm_patched.modules.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
1328 |
+
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
1329 |
+
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
1330 |
+
out = latent.copy()
|
1331 |
+
out["samples"] = samples
|
1332 |
+
return (out, )
|
1333 |
+
|
1334 |
+
class KSampler:
|
1335 |
+
@classmethod
|
1336 |
+
def INPUT_TYPES(s):
|
1337 |
+
return {"required":
|
1338 |
+
{"model": ("MODEL",),
|
1339 |
+
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
1340 |
+
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
1341 |
+
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
|
1342 |
+
"sampler_name": (ldm_patched.modules.samplers.KSampler.SAMPLERS, ),
|
1343 |
+
"scheduler": (ldm_patched.modules.samplers.KSampler.SCHEDULERS, ),
|
1344 |
+
"positive": ("CONDITIONING", ),
|
1345 |
+
"negative": ("CONDITIONING", ),
|
1346 |
+
"latent_image": ("LATENT", ),
|
1347 |
+
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
1348 |
+
}
|
1349 |
+
}
|
1350 |
+
|
1351 |
+
RETURN_TYPES = ("LATENT",)
|
1352 |
+
FUNCTION = "sample"
|
1353 |
+
|
1354 |
+
CATEGORY = "sampling"
|
1355 |
+
|
1356 |
+
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
|
1357 |
+
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
|
1358 |
+
|
1359 |
+
class KSamplerAdvanced:
|
1360 |
+
@classmethod
|
1361 |
+
def INPUT_TYPES(s):
|
1362 |
+
return {"required":
|
1363 |
+
{"model": ("MODEL",),
|
1364 |
+
"add_noise": (["enable", "disable"], ),
|
1365 |
+
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
1366 |
+
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
1367 |
+
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
|
1368 |
+
"sampler_name": (ldm_patched.modules.samplers.KSampler.SAMPLERS, ),
|
1369 |
+
"scheduler": (ldm_patched.modules.samplers.KSampler.SCHEDULERS, ),
|
1370 |
+
"positive": ("CONDITIONING", ),
|
1371 |
+
"negative": ("CONDITIONING", ),
|
1372 |
+
"latent_image": ("LATENT", ),
|
1373 |
+
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
1374 |
+
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
|
1375 |
+
"return_with_leftover_noise": (["disable", "enable"], ),
|
1376 |
+
}
|
1377 |
+
}
|
1378 |
+
|
1379 |
+
RETURN_TYPES = ("LATENT",)
|
1380 |
+
FUNCTION = "sample"
|
1381 |
+
|
1382 |
+
CATEGORY = "sampling"
|
1383 |
+
|
1384 |
+
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
|
1385 |
+
force_full_denoise = True
|
1386 |
+
if return_with_leftover_noise == "enable":
|
1387 |
+
force_full_denoise = False
|
1388 |
+
disable_noise = False
|
1389 |
+
if add_noise == "disable":
|
1390 |
+
disable_noise = True
|
1391 |
+
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
|
1392 |
+
|
1393 |
+
class SaveImage:
|
1394 |
+
def __init__(self):
|
1395 |
+
self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
|
1396 |
+
self.type = "output"
|
1397 |
+
self.prefix_append = ""
|
1398 |
+
self.compress_level = 4
|
1399 |
+
|
1400 |
+
@classmethod
|
1401 |
+
def INPUT_TYPES(s):
|
1402 |
+
return {"required":
|
1403 |
+
{"images": ("IMAGE", ),
|
1404 |
+
"filename_prefix": ("STRING", {"default": "ldm_patched"})},
|
1405 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
1406 |
+
}
|
1407 |
+
|
1408 |
+
RETURN_TYPES = ()
|
1409 |
+
FUNCTION = "save_images"
|
1410 |
+
|
1411 |
+
OUTPUT_NODE = True
|
1412 |
+
|
1413 |
+
CATEGORY = "image"
|
1414 |
+
|
1415 |
+
def save_images(self, images, filename_prefix="ldm_patched", prompt=None, extra_pnginfo=None):
|
1416 |
+
filename_prefix += self.prefix_append
|
1417 |
+
full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
1418 |
+
results = list()
|
1419 |
+
for image in images:
|
1420 |
+
i = 255. * image.cpu().numpy()
|
1421 |
+
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
1422 |
+
metadata = None
|
1423 |
+
if not args.disable_server_info:
|
1424 |
+
metadata = PngInfo()
|
1425 |
+
if prompt is not None:
|
1426 |
+
metadata.add_text("prompt", json.dumps(prompt))
|
1427 |
+
if extra_pnginfo is not None:
|
1428 |
+
for x in extra_pnginfo:
|
1429 |
+
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
1430 |
+
|
1431 |
+
file = f"{filename}_{counter:05}_.png"
|
1432 |
+
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
|
1433 |
+
results.append({
|
1434 |
+
"filename": file,
|
1435 |
+
"subfolder": subfolder,
|
1436 |
+
"type": self.type
|
1437 |
+
})
|
1438 |
+
counter += 1
|
1439 |
+
|
1440 |
+
return { "ui": { "images": results } }
|
1441 |
+
|
1442 |
+
class PreviewImage(SaveImage):
|
1443 |
+
def __init__(self):
|
1444 |
+
self.output_dir = ldm_patched.utils.path_utils.get_temp_directory()
|
1445 |
+
self.type = "temp"
|
1446 |
+
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
1447 |
+
self.compress_level = 1
|
1448 |
+
|
1449 |
+
@classmethod
|
1450 |
+
def INPUT_TYPES(s):
|
1451 |
+
return {"required":
|
1452 |
+
{"images": ("IMAGE", ), },
|
1453 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
1454 |
+
}
|
1455 |
+
|
1456 |
+
class LoadImage:
|
1457 |
+
@classmethod
|
1458 |
+
def INPUT_TYPES(s):
|
1459 |
+
input_dir = ldm_patched.utils.path_utils.get_input_directory()
|
1460 |
+
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
1461 |
+
return {"required":
|
1462 |
+
{"image": (sorted(files), {"image_upload": True})},
|
1463 |
+
}
|
1464 |
+
|
1465 |
+
CATEGORY = "image"
|
1466 |
+
|
1467 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
1468 |
+
FUNCTION = "load_image"
|
1469 |
+
def load_image(self, image):
|
1470 |
+
image_path = ldm_patched.utils.path_utils.get_annotated_filepath(image)
|
1471 |
+
img = Image.open(image_path)
|
1472 |
+
output_images = []
|
1473 |
+
output_masks = []
|
1474 |
+
for i in ImageSequence.Iterator(img):
|
1475 |
+
i = ImageOps.exif_transpose(i)
|
1476 |
+
if i.mode == 'I':
|
1477 |
+
i = i.point(lambda i: i * (1 / 255))
|
1478 |
+
image = i.convert("RGB")
|
1479 |
+
image = np.array(image).astype(np.float32) / 255.0
|
1480 |
+
image = torch.from_numpy(image)[None,]
|
1481 |
+
if 'A' in i.getbands():
|
1482 |
+
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
1483 |
+
mask = 1. - torch.from_numpy(mask)
|
1484 |
+
else:
|
1485 |
+
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
1486 |
+
output_images.append(image)
|
1487 |
+
output_masks.append(mask.unsqueeze(0))
|
1488 |
+
|
1489 |
+
if len(output_images) > 1:
|
1490 |
+
output_image = torch.cat(output_images, dim=0)
|
1491 |
+
output_mask = torch.cat(output_masks, dim=0)
|
1492 |
+
else:
|
1493 |
+
output_image = output_images[0]
|
1494 |
+
output_mask = output_masks[0]
|
1495 |
+
|
1496 |
+
return (output_image, output_mask)
|
1497 |
+
|
1498 |
+
@classmethod
|
1499 |
+
def IS_CHANGED(s, image):
|
1500 |
+
image_path = ldm_patched.utils.path_utils.get_annotated_filepath(image)
|
1501 |
+
m = hashlib.sha256()
|
1502 |
+
with open(image_path, 'rb') as f:
|
1503 |
+
m.update(f.read())
|
1504 |
+
return m.digest().hex()
|
1505 |
+
|
1506 |
+
@classmethod
|
1507 |
+
def VALIDATE_INPUTS(s, image):
|
1508 |
+
if not ldm_patched.utils.path_utils.exists_annotated_filepath(image):
|
1509 |
+
return "Invalid image file: {}".format(image)
|
1510 |
+
|
1511 |
+
return True
|
1512 |
+
|
1513 |
+
class LoadImageMask:
|
1514 |
+
_color_channels = ["alpha", "red", "green", "blue"]
|
1515 |
+
@classmethod
|
1516 |
+
def INPUT_TYPES(s):
|
1517 |
+
input_dir = ldm_patched.utils.path_utils.get_input_directory()
|
1518 |
+
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
1519 |
+
return {"required":
|
1520 |
+
{"image": (sorted(files), {"image_upload": True}),
|
1521 |
+
"channel": (s._color_channels, ), }
|
1522 |
+
}
|
1523 |
+
|
1524 |
+
CATEGORY = "mask"
|
1525 |
+
|
1526 |
+
RETURN_TYPES = ("MASK",)
|
1527 |
+
FUNCTION = "load_image"
|
1528 |
+
def load_image(self, image, channel):
|
1529 |
+
image_path = ldm_patched.utils.path_utils.get_annotated_filepath(image)
|
1530 |
+
i = Image.open(image_path)
|
1531 |
+
i = ImageOps.exif_transpose(i)
|
1532 |
+
if i.getbands() != ("R", "G", "B", "A"):
|
1533 |
+
if i.mode == 'I':
|
1534 |
+
i = i.point(lambda i: i * (1 / 255))
|
1535 |
+
i = i.convert("RGBA")
|
1536 |
+
mask = None
|
1537 |
+
c = channel[0].upper()
|
1538 |
+
if c in i.getbands():
|
1539 |
+
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
|
1540 |
+
mask = torch.from_numpy(mask)
|
1541 |
+
if c == 'A':
|
1542 |
+
mask = 1. - mask
|
1543 |
+
else:
|
1544 |
+
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
1545 |
+
return (mask.unsqueeze(0),)
|
1546 |
+
|
1547 |
+
@classmethod
|
1548 |
+
def IS_CHANGED(s, image, channel):
|
1549 |
+
image_path = ldm_patched.utils.path_utils.get_annotated_filepath(image)
|
1550 |
+
m = hashlib.sha256()
|
1551 |
+
with open(image_path, 'rb') as f:
|
1552 |
+
m.update(f.read())
|
1553 |
+
return m.digest().hex()
|
1554 |
+
|
1555 |
+
@classmethod
|
1556 |
+
def VALIDATE_INPUTS(s, image):
|
1557 |
+
if not ldm_patched.utils.path_utils.exists_annotated_filepath(image):
|
1558 |
+
return "Invalid image file: {}".format(image)
|
1559 |
+
|
1560 |
+
return True
|
1561 |
+
|
1562 |
+
class ImageScale:
|
1563 |
+
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
1564 |
+
crop_methods = ["disabled", "center"]
|
1565 |
+
|
1566 |
+
@classmethod
|
1567 |
+
def INPUT_TYPES(s):
|
1568 |
+
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
1569 |
+
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
1570 |
+
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
1571 |
+
"crop": (s.crop_methods,)}}
|
1572 |
+
RETURN_TYPES = ("IMAGE",)
|
1573 |
+
FUNCTION = "upscale"
|
1574 |
+
|
1575 |
+
CATEGORY = "image/upscaling"
|
1576 |
+
|
1577 |
+
def upscale(self, image, upscale_method, width, height, crop):
|
1578 |
+
if width == 0 and height == 0:
|
1579 |
+
s = image
|
1580 |
+
else:
|
1581 |
+
samples = image.movedim(-1,1)
|
1582 |
+
|
1583 |
+
if width == 0:
|
1584 |
+
width = max(1, round(samples.shape[3] * height / samples.shape[2]))
|
1585 |
+
elif height == 0:
|
1586 |
+
height = max(1, round(samples.shape[2] * width / samples.shape[3]))
|
1587 |
+
|
1588 |
+
s = ldm_patched.modules.utils.common_upscale(samples, width, height, upscale_method, crop)
|
1589 |
+
s = s.movedim(1,-1)
|
1590 |
+
return (s,)
|
1591 |
+
|
1592 |
+
class ImageScaleBy:
|
1593 |
+
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
1594 |
+
|
1595 |
+
@classmethod
|
1596 |
+
def INPUT_TYPES(s):
|
1597 |
+
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
1598 |
+
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
|
1599 |
+
RETURN_TYPES = ("IMAGE",)
|
1600 |
+
FUNCTION = "upscale"
|
1601 |
+
|
1602 |
+
CATEGORY = "image/upscaling"
|
1603 |
+
|
1604 |
+
def upscale(self, image, upscale_method, scale_by):
|
1605 |
+
samples = image.movedim(-1,1)
|
1606 |
+
width = round(samples.shape[3] * scale_by)
|
1607 |
+
height = round(samples.shape[2] * scale_by)
|
1608 |
+
s = ldm_patched.modules.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
1609 |
+
s = s.movedim(1,-1)
|
1610 |
+
return (s,)
|
1611 |
+
|
1612 |
+
class ImageInvert:
|
1613 |
+
|
1614 |
+
@classmethod
|
1615 |
+
def INPUT_TYPES(s):
|
1616 |
+
return {"required": { "image": ("IMAGE",)}}
|
1617 |
+
|
1618 |
+
RETURN_TYPES = ("IMAGE",)
|
1619 |
+
FUNCTION = "invert"
|
1620 |
+
|
1621 |
+
CATEGORY = "image"
|
1622 |
+
|
1623 |
+
def invert(self, image):
|
1624 |
+
s = 1.0 - image
|
1625 |
+
return (s,)
|
1626 |
+
|
1627 |
+
class ImageBatch:
|
1628 |
+
|
1629 |
+
@classmethod
|
1630 |
+
def INPUT_TYPES(s):
|
1631 |
+
return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}
|
1632 |
+
|
1633 |
+
RETURN_TYPES = ("IMAGE",)
|
1634 |
+
FUNCTION = "batch"
|
1635 |
+
|
1636 |
+
CATEGORY = "image"
|
1637 |
+
|
1638 |
+
def batch(self, image1, image2):
|
1639 |
+
if image1.shape[1:] != image2.shape[1:]:
|
1640 |
+
image2 = ldm_patched.modules.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
|
1641 |
+
s = torch.cat((image1, image2), dim=0)
|
1642 |
+
return (s,)
|
1643 |
+
|
1644 |
+
class EmptyImage:
|
1645 |
+
def __init__(self, device="cpu"):
|
1646 |
+
self.device = device
|
1647 |
+
|
1648 |
+
@classmethod
|
1649 |
+
def INPUT_TYPES(s):
|
1650 |
+
return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
1651 |
+
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
1652 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
1653 |
+
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
|
1654 |
+
}}
|
1655 |
+
RETURN_TYPES = ("IMAGE",)
|
1656 |
+
FUNCTION = "generate"
|
1657 |
+
|
1658 |
+
CATEGORY = "image"
|
1659 |
+
|
1660 |
+
def generate(self, width, height, batch_size=1, color=0):
|
1661 |
+
r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
|
1662 |
+
g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
|
1663 |
+
b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
|
1664 |
+
return (torch.cat((r, g, b), dim=-1), )
|
1665 |
+
|
1666 |
+
class ImagePadForOutpaint:
|
1667 |
+
|
1668 |
+
@classmethod
|
1669 |
+
def INPUT_TYPES(s):
|
1670 |
+
return {
|
1671 |
+
"required": {
|
1672 |
+
"image": ("IMAGE",),
|
1673 |
+
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1674 |
+
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1675 |
+
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1676 |
+
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
1677 |
+
"feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
1678 |
+
}
|
1679 |
+
}
|
1680 |
+
|
1681 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
1682 |
+
FUNCTION = "expand_image"
|
1683 |
+
|
1684 |
+
CATEGORY = "image"
|
1685 |
+
|
1686 |
+
def expand_image(self, image, left, top, right, bottom, feathering):
|
1687 |
+
d1, d2, d3, d4 = image.size()
|
1688 |
+
|
1689 |
+
new_image = torch.ones(
|
1690 |
+
(d1, d2 + top + bottom, d3 + left + right, d4),
|
1691 |
+
dtype=torch.float32,
|
1692 |
+
) * 0.5
|
1693 |
+
|
1694 |
+
new_image[:, top:top + d2, left:left + d3, :] = image
|
1695 |
+
|
1696 |
+
mask = torch.ones(
|
1697 |
+
(d2 + top + bottom, d3 + left + right),
|
1698 |
+
dtype=torch.float32,
|
1699 |
+
)
|
1700 |
+
|
1701 |
+
t = torch.zeros(
|
1702 |
+
(d2, d3),
|
1703 |
+
dtype=torch.float32
|
1704 |
+
)
|
1705 |
+
|
1706 |
+
if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
|
1707 |
+
|
1708 |
+
for i in range(d2):
|
1709 |
+
for j in range(d3):
|
1710 |
+
dt = i if top != 0 else d2
|
1711 |
+
db = d2 - i if bottom != 0 else d2
|
1712 |
+
|
1713 |
+
dl = j if left != 0 else d3
|
1714 |
+
dr = d3 - j if right != 0 else d3
|
1715 |
+
|
1716 |
+
d = min(dt, db, dl, dr)
|
1717 |
+
|
1718 |
+
if d >= feathering:
|
1719 |
+
continue
|
1720 |
+
|
1721 |
+
v = (feathering - d) / feathering
|
1722 |
+
|
1723 |
+
t[i, j] = v * v
|
1724 |
+
|
1725 |
+
mask[top:top + d2, left:left + d3] = t
|
1726 |
+
|
1727 |
+
return (new_image, mask)
|
1728 |
+
|
1729 |
+
|
1730 |
+
NODE_CLASS_MAPPINGS = {
|
1731 |
+
"KSampler": KSampler,
|
1732 |
+
"CheckpointLoaderSimple": CheckpointLoaderSimple,
|
1733 |
+
"CLIPTextEncode": CLIPTextEncode,
|
1734 |
+
"CLIPSetLastLayer": CLIPSetLastLayer,
|
1735 |
+
"VAEDecode": VAEDecode,
|
1736 |
+
"VAEEncode": VAEEncode,
|
1737 |
+
"VAEEncodeForInpaint": VAEEncodeForInpaint,
|
1738 |
+
"VAELoader": VAELoader,
|
1739 |
+
"EmptyLatentImage": EmptyLatentImage,
|
1740 |
+
"LatentUpscale": LatentUpscale,
|
1741 |
+
"LatentUpscaleBy": LatentUpscaleBy,
|
1742 |
+
"LatentFromBatch": LatentFromBatch,
|
1743 |
+
"RepeatLatentBatch": RepeatLatentBatch,
|
1744 |
+
"SaveImage": SaveImage,
|
1745 |
+
"PreviewImage": PreviewImage,
|
1746 |
+
"LoadImage": LoadImage,
|
1747 |
+
"LoadImageMask": LoadImageMask,
|
1748 |
+
"ImageScale": ImageScale,
|
1749 |
+
"ImageScaleBy": ImageScaleBy,
|
1750 |
+
"ImageInvert": ImageInvert,
|
1751 |
+
"ImageBatch": ImageBatch,
|
1752 |
+
"ImagePadForOutpaint": ImagePadForOutpaint,
|
1753 |
+
"EmptyImage": EmptyImage,
|
1754 |
+
"ConditioningAverage": ConditioningAverage ,
|
1755 |
+
"ConditioningCombine": ConditioningCombine,
|
1756 |
+
"ConditioningConcat": ConditioningConcat,
|
1757 |
+
"ConditioningSetArea": ConditioningSetArea,
|
1758 |
+
"ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
|
1759 |
+
"ConditioningSetMask": ConditioningSetMask,
|
1760 |
+
"KSamplerAdvanced": KSamplerAdvanced,
|
1761 |
+
"SetLatentNoiseMask": SetLatentNoiseMask,
|
1762 |
+
"LatentComposite": LatentComposite,
|
1763 |
+
"LatentBlend": LatentBlend,
|
1764 |
+
"LatentRotate": LatentRotate,
|
1765 |
+
"LatentFlip": LatentFlip,
|
1766 |
+
"LatentCrop": LatentCrop,
|
1767 |
+
"LoraLoader": LoraLoader,
|
1768 |
+
"CLIPLoader": CLIPLoader,
|
1769 |
+
"UNETLoader": UNETLoader,
|
1770 |
+
"DualCLIPLoader": DualCLIPLoader,
|
1771 |
+
"CLIPVisionEncode": CLIPVisionEncode,
|
1772 |
+
"StyleModelApply": StyleModelApply,
|
1773 |
+
"unCLIPConditioning": unCLIPConditioning,
|
1774 |
+
"ControlNetApply": ControlNetApply,
|
1775 |
+
"ControlNetApplyAdvanced": ControlNetApplyAdvanced,
|
1776 |
+
"ControlNetLoader": ControlNetLoader,
|
1777 |
+
"DiffControlNetLoader": DiffControlNetLoader,
|
1778 |
+
"StyleModelLoader": StyleModelLoader,
|
1779 |
+
"CLIPVisionLoader": CLIPVisionLoader,
|
1780 |
+
"VAEDecodeTiled": VAEDecodeTiled,
|
1781 |
+
"VAEEncodeTiled": VAEEncodeTiled,
|
1782 |
+
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
|
1783 |
+
"GLIGENLoader": GLIGENLoader,
|
1784 |
+
"GLIGENTextBoxApply": GLIGENTextBoxApply,
|
1785 |
+
"InpaintModelConditioning": InpaintModelConditioning,
|
1786 |
+
|
1787 |
+
"CheckpointLoader": CheckpointLoader,
|
1788 |
+
"DiffusersLoader": DiffusersLoader,
|
1789 |
+
|
1790 |
+
"LoadLatent": LoadLatent,
|
1791 |
+
"SaveLatent": SaveLatent,
|
1792 |
+
|
1793 |
+
"ConditioningZeroOut": ConditioningZeroOut,
|
1794 |
+
"ConditioningSetTimestepRange": ConditioningSetTimestepRange,
|
1795 |
+
"LoraLoaderModelOnly": LoraLoaderModelOnly,
|
1796 |
+
}
|
1797 |
+
|
1798 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
1799 |
+
# Sampling
|
1800 |
+
"KSampler": "KSampler",
|
1801 |
+
"KSamplerAdvanced": "KSampler (Advanced)",
|
1802 |
+
# Loaders
|
1803 |
+
"CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
|
1804 |
+
"CheckpointLoaderSimple": "Load Checkpoint",
|
1805 |
+
"VAELoader": "Load VAE",
|
1806 |
+
"LoraLoader": "Load LoRA",
|
1807 |
+
"CLIPLoader": "Load CLIP",
|
1808 |
+
"ControlNetLoader": "Load ControlNet Model",
|
1809 |
+
"DiffControlNetLoader": "Load ControlNet Model (diff)",
|
1810 |
+
"StyleModelLoader": "Load Style Model",
|
1811 |
+
"CLIPVisionLoader": "Load CLIP Vision",
|
1812 |
+
"UpscaleModelLoader": "Load Upscale Model",
|
1813 |
+
# Conditioning
|
1814 |
+
"CLIPVisionEncode": "CLIP Vision Encode",
|
1815 |
+
"StyleModelApply": "Apply Style Model",
|
1816 |
+
"CLIPTextEncode": "CLIP Text Encode (Prompt)",
|
1817 |
+
"CLIPSetLastLayer": "CLIP Set Last Layer",
|
1818 |
+
"ConditioningCombine": "Conditioning (Combine)",
|
1819 |
+
"ConditioningAverage ": "Conditioning (Average)",
|
1820 |
+
"ConditioningConcat": "Conditioning (Concat)",
|
1821 |
+
"ConditioningSetArea": "Conditioning (Set Area)",
|
1822 |
+
"ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
|
1823 |
+
"ConditioningSetMask": "Conditioning (Set Mask)",
|
1824 |
+
"ControlNetApply": "Apply ControlNet",
|
1825 |
+
"ControlNetApplyAdvanced": "Apply ControlNet (Advanced)",
|
1826 |
+
# Latent
|
1827 |
+
"VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
|
1828 |
+
"SetLatentNoiseMask": "Set Latent Noise Mask",
|
1829 |
+
"VAEDecode": "VAE Decode",
|
1830 |
+
"VAEEncode": "VAE Encode",
|
1831 |
+
"LatentRotate": "Rotate Latent",
|
1832 |
+
"LatentFlip": "Flip Latent",
|
1833 |
+
"LatentCrop": "Crop Latent",
|
1834 |
+
"EmptyLatentImage": "Empty Latent Image",
|
1835 |
+
"LatentUpscale": "Upscale Latent",
|
1836 |
+
"LatentUpscaleBy": "Upscale Latent By",
|
1837 |
+
"LatentComposite": "Latent Composite",
|
1838 |
+
"LatentBlend": "Latent Blend",
|
1839 |
+
"LatentFromBatch" : "Latent From Batch",
|
1840 |
+
"RepeatLatentBatch": "Repeat Latent Batch",
|
1841 |
+
# Image
|
1842 |
+
"SaveImage": "Save Image",
|
1843 |
+
"PreviewImage": "Preview Image",
|
1844 |
+
"LoadImage": "Load Image",
|
1845 |
+
"LoadImageMask": "Load Image (as Mask)",
|
1846 |
+
"ImageScale": "Upscale Image",
|
1847 |
+
"ImageScaleBy": "Upscale Image By",
|
1848 |
+
"ImageUpscaleWithModel": "Upscale Image (using Model)",
|
1849 |
+
"ImageInvert": "Invert Image",
|
1850 |
+
"ImagePadForOutpaint": "Pad Image for Outpainting",
|
1851 |
+
"ImageBatch": "Batch Images",
|
1852 |
+
# _for_testing
|
1853 |
+
"VAEDecodeTiled": "VAE Decode (Tiled)",
|
1854 |
+
"VAEEncodeTiled": "VAE Encode (Tiled)",
|
1855 |
+
}
|
1856 |
+
|
1857 |
+
EXTENSION_WEB_DIRS = {}
|
1858 |
+
|
1859 |
+
def load_custom_node(module_path, ignore=set()):
|
1860 |
+
module_name = os.path.basename(module_path)
|
1861 |
+
if os.path.isfile(module_path):
|
1862 |
+
sp = os.path.splitext(module_path)
|
1863 |
+
module_name = sp[0]
|
1864 |
+
try:
|
1865 |
+
if os.path.isfile(module_path):
|
1866 |
+
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
|
1867 |
+
module_dir = os.path.split(module_path)[0]
|
1868 |
+
else:
|
1869 |
+
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
|
1870 |
+
module_dir = module_path
|
1871 |
+
|
1872 |
+
module = importlib.util.module_from_spec(module_spec)
|
1873 |
+
sys.modules[module_name] = module
|
1874 |
+
module_spec.loader.exec_module(module)
|
1875 |
+
|
1876 |
+
if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
|
1877 |
+
web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
|
1878 |
+
if os.path.isdir(web_dir):
|
1879 |
+
EXTENSION_WEB_DIRS[module_name] = web_dir
|
1880 |
+
|
1881 |
+
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
|
1882 |
+
for name in module.NODE_CLASS_MAPPINGS:
|
1883 |
+
if name not in ignore:
|
1884 |
+
NODE_CLASS_MAPPINGS[name] = module.NODE_CLASS_MAPPINGS[name]
|
1885 |
+
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
|
1886 |
+
NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
|
1887 |
+
return True
|
1888 |
+
else:
|
1889 |
+
print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
|
1890 |
+
return False
|
1891 |
+
except Exception as e:
|
1892 |
+
print(traceback.format_exc())
|
1893 |
+
print(f"Cannot import {module_path} module for custom nodes:", e)
|
1894 |
+
return False
|
1895 |
+
|
1896 |
+
def load_custom_nodes():
|
1897 |
+
base_node_names = set(NODE_CLASS_MAPPINGS.keys())
|
1898 |
+
node_paths = ldm_patched.utils.path_utils.get_folder_paths("custom_nodes")
|
1899 |
+
node_import_times = []
|
1900 |
+
for custom_node_path in node_paths:
|
1901 |
+
possible_modules = os.listdir(os.path.realpath(custom_node_path))
|
1902 |
+
if "__pycache__" in possible_modules:
|
1903 |
+
possible_modules.remove("__pycache__")
|
1904 |
+
|
1905 |
+
for possible_module in possible_modules:
|
1906 |
+
module_path = os.path.join(custom_node_path, possible_module)
|
1907 |
+
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
|
1908 |
+
if module_path.endswith(".disabled"): continue
|
1909 |
+
time_before = time.perf_counter()
|
1910 |
+
success = load_custom_node(module_path, base_node_names)
|
1911 |
+
node_import_times.append((time.perf_counter() - time_before, module_path, success))
|
1912 |
+
|
1913 |
+
if len(node_import_times) > 0:
|
1914 |
+
print("\nImport times for custom nodes:")
|
1915 |
+
for n in sorted(node_import_times):
|
1916 |
+
if n[2]:
|
1917 |
+
import_message = ""
|
1918 |
+
else:
|
1919 |
+
import_message = " (IMPORT FAILED)"
|
1920 |
+
print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
|
1921 |
+
print()
|
1922 |
+
|
1923 |
+
def init_custom_nodes():
|
1924 |
+
extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "ldm_patched_extras")
|
1925 |
+
extras_files = [
|
1926 |
+
"nodes_latent.py",
|
1927 |
+
"nodes_hypernetwork.py",
|
1928 |
+
"nodes_upscale_model.py",
|
1929 |
+
"nodes_post_processing.py",
|
1930 |
+
"nodes_mask.py",
|
1931 |
+
"nodes_compositing.py",
|
1932 |
+
"nodes_rebatch.py",
|
1933 |
+
"nodes_model_merging.py",
|
1934 |
+
"nodes_tomesd.py",
|
1935 |
+
"nodes_clip_sdxl.py",
|
1936 |
+
"nodes_canny.py",
|
1937 |
+
"nodes_freelunch.py",
|
1938 |
+
"nodes_custom_sampler.py",
|
1939 |
+
"nodes_hypertile.py",
|
1940 |
+
"nodes_model_advanced.py",
|
1941 |
+
"nodes_model_downscale.py",
|
1942 |
+
"nodes_images.py",
|
1943 |
+
"nodes_video_model.py",
|
1944 |
+
"nodes_sag.py",
|
1945 |
+
"nodes_perpneg.py",
|
1946 |
+
"nodes_stable3d.py",
|
1947 |
+
"nodes_sdupscale.py",
|
1948 |
+
"nodes_photomaker.py",
|
1949 |
+
]
|
1950 |
+
|
1951 |
+
for node_file in extras_files:
|
1952 |
+
load_custom_node(os.path.join(extras_dir, node_file))
|
1953 |
+
|
1954 |
+
load_custom_nodes()
|
ldm_patched/contrib/external_align_your_steps.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
#from: https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
def loglinear_interp(t_steps, num_steps):
|
8 |
+
"""
|
9 |
+
Performs log-linear interpolation of a given array of decreasing numbers.
|
10 |
+
"""
|
11 |
+
xs = np.linspace(0, 1, len(t_steps))
|
12 |
+
ys = np.log(t_steps[::-1])
|
13 |
+
|
14 |
+
new_xs = np.linspace(0, 1, num_steps)
|
15 |
+
new_ys = np.interp(new_xs, xs, ys)
|
16 |
+
|
17 |
+
interped_ys = np.exp(new_ys)[::-1].copy()
|
18 |
+
return interped_ys
|
19 |
+
|
20 |
+
NOISE_LEVELS = {"SD1": [14.6146412293, 6.4745760956, 3.8636745985, 2.6946151520, 1.8841921177, 1.3943805092, 0.9642583904, 0.6523686016, 0.3977456272, 0.1515232662, 0.0291671582],
|
21 |
+
"SDXL":[14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582],
|
22 |
+
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002]}
|
23 |
+
|
24 |
+
class AlignYourStepsScheduler:
|
25 |
+
@classmethod
|
26 |
+
def INPUT_TYPES(s):
|
27 |
+
return {"required":
|
28 |
+
{"model_type": (["SD1", "SDXL", "SVD"], ),
|
29 |
+
"steps": ("INT", {"default": 10, "min": 10, "max": 10000}),
|
30 |
+
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
31 |
+
}
|
32 |
+
}
|
33 |
+
RETURN_TYPES = ("SIGMAS",)
|
34 |
+
CATEGORY = "sampling/custom_sampling/schedulers"
|
35 |
+
|
36 |
+
FUNCTION = "get_sigmas"
|
37 |
+
|
38 |
+
def get_sigmas(self, model_type, steps, denoise):
|
39 |
+
total_steps = steps
|
40 |
+
if denoise < 1.0:
|
41 |
+
if denoise <= 0.0:
|
42 |
+
return (torch.FloatTensor([]),)
|
43 |
+
total_steps = round(steps * denoise)
|
44 |
+
|
45 |
+
sigmas = NOISE_LEVELS[model_type][:]
|
46 |
+
if (steps + 1) != len(sigmas):
|
47 |
+
sigmas = loglinear_interp(sigmas, steps + 1)
|
48 |
+
|
49 |
+
sigmas = sigmas[-(total_steps + 1):]
|
50 |
+
sigmas[-1] = 0
|
51 |
+
return (torch.FloatTensor(sigmas), )
|
52 |
+
|
53 |
+
NODE_CLASS_MAPPINGS = {
|
54 |
+
"AlignYourStepsScheduler": AlignYourStepsScheduler,
|
55 |
+
}
|
ldm_patched/contrib/external_canny.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
#From https://github.com/kornia/kornia
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import ldm_patched.modules.model_management
|
9 |
+
|
10 |
+
def get_canny_nms_kernel(device=None, dtype=None):
|
11 |
+
"""Utility function that returns 3x3 kernels for the Canny Non-maximal suppression."""
|
12 |
+
return torch.tensor(
|
13 |
+
[
|
14 |
+
[[[0.0, 0.0, 0.0], [0.0, 1.0, -1.0], [0.0, 0.0, 0.0]]],
|
15 |
+
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]],
|
16 |
+
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0]]],
|
17 |
+
[[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]]],
|
18 |
+
[[[0.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
|
19 |
+
[[[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
|
20 |
+
[[[0.0, -1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
|
21 |
+
[[[0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]],
|
22 |
+
],
|
23 |
+
device=device,
|
24 |
+
dtype=dtype,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def get_hysteresis_kernel(device=None, dtype=None):
|
29 |
+
"""Utility function that returns the 3x3 kernels for the Canny hysteresis."""
|
30 |
+
return torch.tensor(
|
31 |
+
[
|
32 |
+
[[[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0]]],
|
33 |
+
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0]]],
|
34 |
+
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]],
|
35 |
+
[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]]],
|
36 |
+
[[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
|
37 |
+
[[[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
|
38 |
+
[[[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
|
39 |
+
[[[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]],
|
40 |
+
],
|
41 |
+
device=device,
|
42 |
+
dtype=dtype,
|
43 |
+
)
|
44 |
+
|
45 |
+
def gaussian_blur_2d(img, kernel_size, sigma):
|
46 |
+
ksize_half = (kernel_size - 1) * 0.5
|
47 |
+
|
48 |
+
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
|
49 |
+
|
50 |
+
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
|
51 |
+
|
52 |
+
x_kernel = pdf / pdf.sum()
|
53 |
+
x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
|
54 |
+
|
55 |
+
kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
|
56 |
+
kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
|
57 |
+
|
58 |
+
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
|
59 |
+
|
60 |
+
img = torch.nn.functional.pad(img, padding, mode="reflect")
|
61 |
+
img = torch.nn.functional.conv2d(img, kernel2d, groups=img.shape[-3])
|
62 |
+
|
63 |
+
return img
|
64 |
+
|
65 |
+
def get_sobel_kernel2d(device=None, dtype=None):
|
66 |
+
kernel_x = torch.tensor([[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]], device=device, dtype=dtype)
|
67 |
+
kernel_y = kernel_x.transpose(0, 1)
|
68 |
+
return torch.stack([kernel_x, kernel_y])
|
69 |
+
|
70 |
+
def spatial_gradient(input, normalized: bool = True):
|
71 |
+
r"""Compute the first order image derivative in both x and y using a Sobel operator.
|
72 |
+
.. image:: _static/img/spatial_gradient.png
|
73 |
+
Args:
|
74 |
+
input: input image tensor with shape :math:`(B, C, H, W)`.
|
75 |
+
mode: derivatives modality, can be: `sobel` or `diff`.
|
76 |
+
order: the order of the derivatives.
|
77 |
+
normalized: whether the output is normalized.
|
78 |
+
Return:
|
79 |
+
the derivatives of the input feature map. with shape :math:`(B, C, 2, H, W)`.
|
80 |
+
.. note::
|
81 |
+
See a working example `here <https://kornia.readthedocs.io/en/latest/
|
82 |
+
filtering_edges.html>`__.
|
83 |
+
Examples:
|
84 |
+
>>> input = torch.rand(1, 3, 4, 4)
|
85 |
+
>>> output = spatial_gradient(input) # 1x3x2x4x4
|
86 |
+
>>> output.shape
|
87 |
+
torch.Size([1, 3, 2, 4, 4])
|
88 |
+
"""
|
89 |
+
# KORNIA_CHECK_IS_TENSOR(input)
|
90 |
+
# KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W'])
|
91 |
+
|
92 |
+
# allocate kernel
|
93 |
+
kernel = get_sobel_kernel2d(device=input.device, dtype=input.dtype)
|
94 |
+
if normalized:
|
95 |
+
kernel = normalize_kernel2d(kernel)
|
96 |
+
|
97 |
+
# prepare kernel
|
98 |
+
b, c, h, w = input.shape
|
99 |
+
tmp_kernel = kernel[:, None, ...]
|
100 |
+
|
101 |
+
# Pad with "replicate for spatial dims, but with zeros for channel
|
102 |
+
spatial_pad = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2]
|
103 |
+
out_channels: int = 2
|
104 |
+
padded_inp = torch.nn.functional.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate')
|
105 |
+
out = F.conv2d(padded_inp, tmp_kernel, groups=1, padding=0, stride=1)
|
106 |
+
return out.reshape(b, c, out_channels, h, w)
|
107 |
+
|
108 |
+
def rgb_to_grayscale(image, rgb_weights = None):
|
109 |
+
r"""Convert a RGB image to grayscale version of image.
|
110 |
+
|
111 |
+
.. image:: _static/img/rgb_to_grayscale.png
|
112 |
+
|
113 |
+
The image data is assumed to be in the range of (0, 1).
|
114 |
+
|
115 |
+
Args:
|
116 |
+
image: RGB image to be converted to grayscale with shape :math:`(*,3,H,W)`.
|
117 |
+
rgb_weights: Weights that will be applied on each channel (RGB).
|
118 |
+
The sum of the weights should add up to one.
|
119 |
+
Returns:
|
120 |
+
grayscale version of the image with shape :math:`(*,1,H,W)`.
|
121 |
+
|
122 |
+
.. note::
|
123 |
+
See a working example `here <https://kornia.readthedocs.io/en/latest/
|
124 |
+
color_conversions.html>`__.
|
125 |
+
|
126 |
+
Example:
|
127 |
+
>>> input = torch.rand(2, 3, 4, 5)
|
128 |
+
>>> gray = rgb_to_grayscale(input) # 2x1x4x5
|
129 |
+
"""
|
130 |
+
|
131 |
+
if len(image.shape) < 3 or image.shape[-3] != 3:
|
132 |
+
raise ValueError(f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")
|
133 |
+
|
134 |
+
if rgb_weights is None:
|
135 |
+
# 8 bit images
|
136 |
+
if image.dtype == torch.uint8:
|
137 |
+
rgb_weights = torch.tensor([76, 150, 29], device=image.device, dtype=torch.uint8)
|
138 |
+
# floating point images
|
139 |
+
elif image.dtype in (torch.float16, torch.float32, torch.float64):
|
140 |
+
rgb_weights = torch.tensor([0.299, 0.587, 0.114], device=image.device, dtype=image.dtype)
|
141 |
+
else:
|
142 |
+
raise TypeError(f"Unknown data type: {image.dtype}")
|
143 |
+
else:
|
144 |
+
# is tensor that we make sure is in the same device/dtype
|
145 |
+
rgb_weights = rgb_weights.to(image)
|
146 |
+
|
147 |
+
# unpack the color image channels with RGB order
|
148 |
+
r: Tensor = image[..., 0:1, :, :]
|
149 |
+
g: Tensor = image[..., 1:2, :, :]
|
150 |
+
b: Tensor = image[..., 2:3, :, :]
|
151 |
+
|
152 |
+
w_r, w_g, w_b = rgb_weights.unbind()
|
153 |
+
return w_r * r + w_g * g + w_b * b
|
154 |
+
|
155 |
+
def canny(
|
156 |
+
input,
|
157 |
+
low_threshold = 0.1,
|
158 |
+
high_threshold = 0.2,
|
159 |
+
kernel_size = 5,
|
160 |
+
sigma = 1,
|
161 |
+
hysteresis = True,
|
162 |
+
eps = 1e-6,
|
163 |
+
):
|
164 |
+
r"""Find edges of the input image and filters them using the Canny algorithm.
|
165 |
+
.. image:: _static/img/canny.png
|
166 |
+
Args:
|
167 |
+
input: input image tensor with shape :math:`(B,C,H,W)`.
|
168 |
+
low_threshold: lower threshold for the hysteresis procedure.
|
169 |
+
high_threshold: upper threshold for the hysteresis procedure.
|
170 |
+
kernel_size: the size of the kernel for the gaussian blur.
|
171 |
+
sigma: the standard deviation of the kernel for the gaussian blur.
|
172 |
+
hysteresis: if True, applies the hysteresis edge tracking.
|
173 |
+
Otherwise, the edges are divided between weak (0.5) and strong (1) edges.
|
174 |
+
eps: regularization number to avoid NaN during backprop.
|
175 |
+
Returns:
|
176 |
+
- the canny edge magnitudes map, shape of :math:`(B,1,H,W)`.
|
177 |
+
- the canny edge detection filtered by thresholds and hysteresis, shape of :math:`(B,1,H,W)`.
|
178 |
+
.. note::
|
179 |
+
See a working example `here <https://kornia.readthedocs.io/en/latest/
|
180 |
+
canny.html>`__.
|
181 |
+
Example:
|
182 |
+
>>> input = torch.rand(5, 3, 4, 4)
|
183 |
+
>>> magnitude, edges = canny(input) # 5x3x4x4
|
184 |
+
>>> magnitude.shape
|
185 |
+
torch.Size([5, 1, 4, 4])
|
186 |
+
>>> edges.shape
|
187 |
+
torch.Size([5, 1, 4, 4])
|
188 |
+
"""
|
189 |
+
# KORNIA_CHECK_IS_TENSOR(input)
|
190 |
+
# KORNIA_CHECK_SHAPE(input, ['B', 'C', 'H', 'W'])
|
191 |
+
# KORNIA_CHECK(
|
192 |
+
# low_threshold <= high_threshold,
|
193 |
+
# "Invalid input thresholds. low_threshold should be smaller than the high_threshold. Got: "
|
194 |
+
# f"{low_threshold}>{high_threshold}",
|
195 |
+
# )
|
196 |
+
# KORNIA_CHECK(0 < low_threshold < 1, f'Invalid low threshold. Should be in range (0, 1). Got: {low_threshold}')
|
197 |
+
# KORNIA_CHECK(0 < high_threshold < 1, f'Invalid high threshold. Should be in range (0, 1). Got: {high_threshold}')
|
198 |
+
|
199 |
+
device = input.device
|
200 |
+
dtype = input.dtype
|
201 |
+
|
202 |
+
# To Grayscale
|
203 |
+
if input.shape[1] == 3:
|
204 |
+
input = rgb_to_grayscale(input)
|
205 |
+
|
206 |
+
# Gaussian filter
|
207 |
+
blurred: Tensor = gaussian_blur_2d(input, kernel_size, sigma)
|
208 |
+
|
209 |
+
# Compute the gradients
|
210 |
+
gradients: Tensor = spatial_gradient(blurred, normalized=False)
|
211 |
+
|
212 |
+
# Unpack the edges
|
213 |
+
gx: Tensor = gradients[:, :, 0]
|
214 |
+
gy: Tensor = gradients[:, :, 1]
|
215 |
+
|
216 |
+
# Compute gradient magnitude and angle
|
217 |
+
magnitude: Tensor = torch.sqrt(gx * gx + gy * gy + eps)
|
218 |
+
angle: Tensor = torch.atan2(gy, gx)
|
219 |
+
|
220 |
+
# Radians to Degrees
|
221 |
+
angle = 180.0 * angle / math.pi
|
222 |
+
|
223 |
+
# Round angle to the nearest 45 degree
|
224 |
+
angle = torch.round(angle / 45) * 45
|
225 |
+
|
226 |
+
# Non-maximal suppression
|
227 |
+
nms_kernels: Tensor = get_canny_nms_kernel(device, dtype)
|
228 |
+
nms_magnitude: Tensor = F.conv2d(magnitude, nms_kernels, padding=nms_kernels.shape[-1] // 2)
|
229 |
+
|
230 |
+
# Get the indices for both directions
|
231 |
+
positive_idx: Tensor = (angle / 45) % 8
|
232 |
+
positive_idx = positive_idx.long()
|
233 |
+
|
234 |
+
negative_idx: Tensor = ((angle / 45) + 4) % 8
|
235 |
+
negative_idx = negative_idx.long()
|
236 |
+
|
237 |
+
# Apply the non-maximum suppression to the different directions
|
238 |
+
channel_select_filtered_positive: Tensor = torch.gather(nms_magnitude, 1, positive_idx)
|
239 |
+
channel_select_filtered_negative: Tensor = torch.gather(nms_magnitude, 1, negative_idx)
|
240 |
+
|
241 |
+
channel_select_filtered: Tensor = torch.stack(
|
242 |
+
[channel_select_filtered_positive, channel_select_filtered_negative], 1
|
243 |
+
)
|
244 |
+
|
245 |
+
is_max: Tensor = channel_select_filtered.min(dim=1)[0] > 0.0
|
246 |
+
|
247 |
+
magnitude = magnitude * is_max
|
248 |
+
|
249 |
+
# Threshold
|
250 |
+
edges: Tensor = F.threshold(magnitude, low_threshold, 0.0)
|
251 |
+
|
252 |
+
low: Tensor = magnitude > low_threshold
|
253 |
+
high: Tensor = magnitude > high_threshold
|
254 |
+
|
255 |
+
edges = low * 0.5 + high * 0.5
|
256 |
+
edges = edges.to(dtype)
|
257 |
+
|
258 |
+
# Hysteresis
|
259 |
+
if hysteresis:
|
260 |
+
edges_old: Tensor = -torch.ones(edges.shape, device=edges.device, dtype=dtype)
|
261 |
+
hysteresis_kernels: Tensor = get_hysteresis_kernel(device, dtype)
|
262 |
+
|
263 |
+
while ((edges_old - edges).abs() != 0).any():
|
264 |
+
weak: Tensor = (edges == 0.5).float()
|
265 |
+
strong: Tensor = (edges == 1).float()
|
266 |
+
|
267 |
+
hysteresis_magnitude: Tensor = F.conv2d(
|
268 |
+
edges, hysteresis_kernels, padding=hysteresis_kernels.shape[-1] // 2
|
269 |
+
)
|
270 |
+
hysteresis_magnitude = (hysteresis_magnitude == 1).any(1, keepdim=True).to(dtype)
|
271 |
+
hysteresis_magnitude = hysteresis_magnitude * weak + strong
|
272 |
+
|
273 |
+
edges_old = edges.clone()
|
274 |
+
edges = hysteresis_magnitude + (hysteresis_magnitude == 0) * weak * 0.5
|
275 |
+
|
276 |
+
edges = hysteresis_magnitude
|
277 |
+
|
278 |
+
return magnitude, edges
|
279 |
+
|
280 |
+
|
281 |
+
class Canny:
|
282 |
+
@classmethod
|
283 |
+
def INPUT_TYPES(s):
|
284 |
+
return {"required": {"image": ("IMAGE",),
|
285 |
+
"low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}),
|
286 |
+
"high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01})
|
287 |
+
}}
|
288 |
+
|
289 |
+
RETURN_TYPES = ("IMAGE",)
|
290 |
+
FUNCTION = "detect_edge"
|
291 |
+
|
292 |
+
CATEGORY = "image/preprocessors"
|
293 |
+
|
294 |
+
def detect_edge(self, image, low_threshold, high_threshold):
|
295 |
+
output = canny(image.to(ldm_patched.modules.model_management.get_torch_device()).movedim(-1, 1), low_threshold, high_threshold)
|
296 |
+
img_out = output[1].to(ldm_patched.modules.model_management.intermediate_device()).repeat(1, 3, 1, 1).movedim(1, -1)
|
297 |
+
return (img_out,)
|
298 |
+
|
299 |
+
NODE_CLASS_MAPPINGS = {
|
300 |
+
"Canny": Canny,
|
301 |
+
}
|
ldm_patched/contrib/external_clip_sdxl.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from ldm_patched.contrib.external import MAX_RESOLUTION
|
5 |
+
|
6 |
+
class CLIPTextEncodeSDXLRefiner:
|
7 |
+
@classmethod
|
8 |
+
def INPUT_TYPES(s):
|
9 |
+
return {"required": {
|
10 |
+
"ascore": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 1000.0, "step": 0.01}),
|
11 |
+
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
|
12 |
+
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
|
13 |
+
"text": ("STRING", {"multiline": True}), "clip": ("CLIP", ),
|
14 |
+
}}
|
15 |
+
RETURN_TYPES = ("CONDITIONING",)
|
16 |
+
FUNCTION = "encode"
|
17 |
+
|
18 |
+
CATEGORY = "advanced/conditioning"
|
19 |
+
|
20 |
+
def encode(self, clip, ascore, width, height, text):
|
21 |
+
tokens = clip.tokenize(text)
|
22 |
+
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
|
23 |
+
return ([[cond, {"pooled_output": pooled, "aesthetic_score": ascore, "width": width,"height": height}]], )
|
24 |
+
|
25 |
+
class CLIPTextEncodeSDXL:
|
26 |
+
@classmethod
|
27 |
+
def INPUT_TYPES(s):
|
28 |
+
return {"required": {
|
29 |
+
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
|
30 |
+
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
|
31 |
+
"crop_w": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}),
|
32 |
+
"crop_h": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}),
|
33 |
+
"target_width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
|
34 |
+
"target_height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
|
35 |
+
"text_g": ("STRING", {"multiline": True, "default": "CLIP_G"}), "clip": ("CLIP", ),
|
36 |
+
"text_l": ("STRING", {"multiline": True, "default": "CLIP_L"}), "clip": ("CLIP", ),
|
37 |
+
}}
|
38 |
+
RETURN_TYPES = ("CONDITIONING",)
|
39 |
+
FUNCTION = "encode"
|
40 |
+
|
41 |
+
CATEGORY = "advanced/conditioning"
|
42 |
+
|
43 |
+
def encode(self, clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l):
|
44 |
+
tokens = clip.tokenize(text_g)
|
45 |
+
tokens["l"] = clip.tokenize(text_l)["l"]
|
46 |
+
if len(tokens["l"]) != len(tokens["g"]):
|
47 |
+
empty = clip.tokenize("")
|
48 |
+
while len(tokens["l"]) < len(tokens["g"]):
|
49 |
+
tokens["l"] += empty["l"]
|
50 |
+
while len(tokens["l"]) > len(tokens["g"]):
|
51 |
+
tokens["g"] += empty["g"]
|
52 |
+
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
|
53 |
+
return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], )
|
54 |
+
|
55 |
+
NODE_CLASS_MAPPINGS = {
|
56 |
+
"CLIPTextEncodeSDXLRefiner": CLIPTextEncodeSDXLRefiner,
|
57 |
+
"CLIPTextEncodeSDXL": CLIPTextEncodeSDXL,
|
58 |
+
}
|
ldm_patched/contrib/external_compositing.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import ldm_patched.modules.utils
|
6 |
+
from enum import Enum
|
7 |
+
|
8 |
+
def resize_mask(mask, shape):
|
9 |
+
return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1)
|
10 |
+
|
11 |
+
class PorterDuffMode(Enum):
|
12 |
+
ADD = 0
|
13 |
+
CLEAR = 1
|
14 |
+
DARKEN = 2
|
15 |
+
DST = 3
|
16 |
+
DST_ATOP = 4
|
17 |
+
DST_IN = 5
|
18 |
+
DST_OUT = 6
|
19 |
+
DST_OVER = 7
|
20 |
+
LIGHTEN = 8
|
21 |
+
MULTIPLY = 9
|
22 |
+
OVERLAY = 10
|
23 |
+
SCREEN = 11
|
24 |
+
SRC = 12
|
25 |
+
SRC_ATOP = 13
|
26 |
+
SRC_IN = 14
|
27 |
+
SRC_OUT = 15
|
28 |
+
SRC_OVER = 16
|
29 |
+
XOR = 17
|
30 |
+
|
31 |
+
|
32 |
+
def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_image: torch.Tensor, dst_alpha: torch.Tensor, mode: PorterDuffMode):
|
33 |
+
if mode == PorterDuffMode.ADD:
|
34 |
+
out_alpha = torch.clamp(src_alpha + dst_alpha, 0, 1)
|
35 |
+
out_image = torch.clamp(src_image + dst_image, 0, 1)
|
36 |
+
elif mode == PorterDuffMode.CLEAR:
|
37 |
+
out_alpha = torch.zeros_like(dst_alpha)
|
38 |
+
out_image = torch.zeros_like(dst_image)
|
39 |
+
elif mode == PorterDuffMode.DARKEN:
|
40 |
+
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
|
41 |
+
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.min(src_image, dst_image)
|
42 |
+
elif mode == PorterDuffMode.DST:
|
43 |
+
out_alpha = dst_alpha
|
44 |
+
out_image = dst_image
|
45 |
+
elif mode == PorterDuffMode.DST_ATOP:
|
46 |
+
out_alpha = src_alpha
|
47 |
+
out_image = src_alpha * dst_image + (1 - dst_alpha) * src_image
|
48 |
+
elif mode == PorterDuffMode.DST_IN:
|
49 |
+
out_alpha = src_alpha * dst_alpha
|
50 |
+
out_image = dst_image * src_alpha
|
51 |
+
elif mode == PorterDuffMode.DST_OUT:
|
52 |
+
out_alpha = (1 - src_alpha) * dst_alpha
|
53 |
+
out_image = (1 - src_alpha) * dst_image
|
54 |
+
elif mode == PorterDuffMode.DST_OVER:
|
55 |
+
out_alpha = dst_alpha + (1 - dst_alpha) * src_alpha
|
56 |
+
out_image = dst_image + (1 - dst_alpha) * src_image
|
57 |
+
elif mode == PorterDuffMode.LIGHTEN:
|
58 |
+
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
|
59 |
+
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.max(src_image, dst_image)
|
60 |
+
elif mode == PorterDuffMode.MULTIPLY:
|
61 |
+
out_alpha = src_alpha * dst_alpha
|
62 |
+
out_image = src_image * dst_image
|
63 |
+
elif mode == PorterDuffMode.OVERLAY:
|
64 |
+
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
|
65 |
+
out_image = torch.where(2 * dst_image < dst_alpha, 2 * src_image * dst_image,
|
66 |
+
src_alpha * dst_alpha - 2 * (dst_alpha - src_image) * (src_alpha - dst_image))
|
67 |
+
elif mode == PorterDuffMode.SCREEN:
|
68 |
+
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
|
69 |
+
out_image = src_image + dst_image - src_image * dst_image
|
70 |
+
elif mode == PorterDuffMode.SRC:
|
71 |
+
out_alpha = src_alpha
|
72 |
+
out_image = src_image
|
73 |
+
elif mode == PorterDuffMode.SRC_ATOP:
|
74 |
+
out_alpha = dst_alpha
|
75 |
+
out_image = dst_alpha * src_image + (1 - src_alpha) * dst_image
|
76 |
+
elif mode == PorterDuffMode.SRC_IN:
|
77 |
+
out_alpha = src_alpha * dst_alpha
|
78 |
+
out_image = src_image * dst_alpha
|
79 |
+
elif mode == PorterDuffMode.SRC_OUT:
|
80 |
+
out_alpha = (1 - dst_alpha) * src_alpha
|
81 |
+
out_image = (1 - dst_alpha) * src_image
|
82 |
+
elif mode == PorterDuffMode.SRC_OVER:
|
83 |
+
out_alpha = src_alpha + (1 - src_alpha) * dst_alpha
|
84 |
+
out_image = src_image + (1 - src_alpha) * dst_image
|
85 |
+
elif mode == PorterDuffMode.XOR:
|
86 |
+
out_alpha = (1 - dst_alpha) * src_alpha + (1 - src_alpha) * dst_alpha
|
87 |
+
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image
|
88 |
+
else:
|
89 |
+
out_alpha = None
|
90 |
+
out_image = None
|
91 |
+
return out_image, out_alpha
|
92 |
+
|
93 |
+
|
94 |
+
class PorterDuffImageComposite:
|
95 |
+
@classmethod
|
96 |
+
def INPUT_TYPES(s):
|
97 |
+
return {
|
98 |
+
"required": {
|
99 |
+
"source": ("IMAGE",),
|
100 |
+
"source_alpha": ("MASK",),
|
101 |
+
"destination": ("IMAGE",),
|
102 |
+
"destination_alpha": ("MASK",),
|
103 |
+
"mode": ([mode.name for mode in PorterDuffMode], {"default": PorterDuffMode.DST.name}),
|
104 |
+
},
|
105 |
+
}
|
106 |
+
|
107 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
108 |
+
FUNCTION = "composite"
|
109 |
+
CATEGORY = "mask/compositing"
|
110 |
+
|
111 |
+
def composite(self, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode):
|
112 |
+
batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha))
|
113 |
+
out_images = []
|
114 |
+
out_alphas = []
|
115 |
+
|
116 |
+
for i in range(batch_size):
|
117 |
+
src_image = source[i]
|
118 |
+
dst_image = destination[i]
|
119 |
+
|
120 |
+
assert src_image.shape[2] == dst_image.shape[2] # inputs need to have same number of channels
|
121 |
+
|
122 |
+
src_alpha = source_alpha[i].unsqueeze(2)
|
123 |
+
dst_alpha = destination_alpha[i].unsqueeze(2)
|
124 |
+
|
125 |
+
if dst_alpha.shape[:2] != dst_image.shape[:2]:
|
126 |
+
upscale_input = dst_alpha.unsqueeze(0).permute(0, 3, 1, 2)
|
127 |
+
upscale_output = ldm_patched.modules.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center')
|
128 |
+
dst_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0)
|
129 |
+
if src_image.shape != dst_image.shape:
|
130 |
+
upscale_input = src_image.unsqueeze(0).permute(0, 3, 1, 2)
|
131 |
+
upscale_output = ldm_patched.modules.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center')
|
132 |
+
src_image = upscale_output.permute(0, 2, 3, 1).squeeze(0)
|
133 |
+
if src_alpha.shape != dst_alpha.shape:
|
134 |
+
upscale_input = src_alpha.unsqueeze(0).permute(0, 3, 1, 2)
|
135 |
+
upscale_output = ldm_patched.modules.utils.common_upscale(upscale_input, dst_alpha.shape[1], dst_alpha.shape[0], upscale_method='bicubic', crop='center')
|
136 |
+
src_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0)
|
137 |
+
|
138 |
+
out_image, out_alpha = porter_duff_composite(src_image, src_alpha, dst_image, dst_alpha, PorterDuffMode[mode])
|
139 |
+
|
140 |
+
out_images.append(out_image)
|
141 |
+
out_alphas.append(out_alpha.squeeze(2))
|
142 |
+
|
143 |
+
result = (torch.stack(out_images), torch.stack(out_alphas))
|
144 |
+
return result
|
145 |
+
|
146 |
+
|
147 |
+
class SplitImageWithAlpha:
|
148 |
+
@classmethod
|
149 |
+
def INPUT_TYPES(s):
|
150 |
+
return {
|
151 |
+
"required": {
|
152 |
+
"image": ("IMAGE",),
|
153 |
+
}
|
154 |
+
}
|
155 |
+
|
156 |
+
CATEGORY = "mask/compositing"
|
157 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
158 |
+
FUNCTION = "split_image_with_alpha"
|
159 |
+
|
160 |
+
def split_image_with_alpha(self, image: torch.Tensor):
|
161 |
+
out_images = [i[:,:,:3] for i in image]
|
162 |
+
out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image]
|
163 |
+
result = (torch.stack(out_images), 1.0 - torch.stack(out_alphas))
|
164 |
+
return result
|
165 |
+
|
166 |
+
|
167 |
+
class JoinImageWithAlpha:
|
168 |
+
@classmethod
|
169 |
+
def INPUT_TYPES(s):
|
170 |
+
return {
|
171 |
+
"required": {
|
172 |
+
"image": ("IMAGE",),
|
173 |
+
"alpha": ("MASK",),
|
174 |
+
}
|
175 |
+
}
|
176 |
+
|
177 |
+
CATEGORY = "mask/compositing"
|
178 |
+
RETURN_TYPES = ("IMAGE",)
|
179 |
+
FUNCTION = "join_image_with_alpha"
|
180 |
+
|
181 |
+
def join_image_with_alpha(self, image: torch.Tensor, alpha: torch.Tensor):
|
182 |
+
batch_size = min(len(image), len(alpha))
|
183 |
+
out_images = []
|
184 |
+
|
185 |
+
alpha = 1.0 - resize_mask(alpha, image.shape[1:])
|
186 |
+
for i in range(batch_size):
|
187 |
+
out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2))
|
188 |
+
|
189 |
+
result = (torch.stack(out_images),)
|
190 |
+
return result
|
191 |
+
|
192 |
+
|
193 |
+
NODE_CLASS_MAPPINGS = {
|
194 |
+
"PorterDuffImageComposite": PorterDuffImageComposite,
|
195 |
+
"SplitImageWithAlpha": SplitImageWithAlpha,
|
196 |
+
"JoinImageWithAlpha": JoinImageWithAlpha,
|
197 |
+
}
|
198 |
+
|
199 |
+
|
200 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
201 |
+
"PorterDuffImageComposite": "Porter-Duff Image Composite",
|
202 |
+
"SplitImageWithAlpha": "Split Image with Alpha",
|
203 |
+
"JoinImageWithAlpha": "Join Image with Alpha",
|
204 |
+
}
|
ldm_patched/contrib/external_custom_sampler.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import ldm_patched.modules.samplers
|
4 |
+
import ldm_patched.modules.sample
|
5 |
+
from ldm_patched.k_diffusion import sampling as k_diffusion_sampling
|
6 |
+
import ldm_patched.utils.latent_visualization
|
7 |
+
import torch
|
8 |
+
import ldm_patched.modules.utils
|
9 |
+
|
10 |
+
|
11 |
+
class BasicScheduler:
|
12 |
+
@classmethod
|
13 |
+
def INPUT_TYPES(s):
|
14 |
+
return {"required":
|
15 |
+
{"model": ("MODEL",),
|
16 |
+
"scheduler": (ldm_patched.modules.samplers.SCHEDULER_NAMES, ),
|
17 |
+
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
18 |
+
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
19 |
+
}
|
20 |
+
}
|
21 |
+
RETURN_TYPES = ("SIGMAS",)
|
22 |
+
CATEGORY = "sampling/custom_sampling/schedulers"
|
23 |
+
|
24 |
+
FUNCTION = "get_sigmas"
|
25 |
+
|
26 |
+
def get_sigmas(self, model, scheduler, steps, denoise):
|
27 |
+
total_steps = steps
|
28 |
+
if denoise < 1.0:
|
29 |
+
total_steps = int(steps/denoise)
|
30 |
+
|
31 |
+
ldm_patched.modules.model_management.load_models_gpu([model])
|
32 |
+
sigmas = ldm_patched.modules.samplers.calculate_sigmas_scheduler(model.model, scheduler, total_steps).cpu()
|
33 |
+
sigmas = sigmas[-(steps + 1):]
|
34 |
+
return (sigmas, )
|
35 |
+
|
36 |
+
|
37 |
+
class KarrasScheduler:
|
38 |
+
@classmethod
|
39 |
+
def INPUT_TYPES(s):
|
40 |
+
return {"required":
|
41 |
+
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
42 |
+
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
|
43 |
+
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
|
44 |
+
"rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
|
45 |
+
}
|
46 |
+
}
|
47 |
+
RETURN_TYPES = ("SIGMAS",)
|
48 |
+
CATEGORY = "sampling/custom_sampling/schedulers"
|
49 |
+
|
50 |
+
FUNCTION = "get_sigmas"
|
51 |
+
|
52 |
+
def get_sigmas(self, steps, sigma_max, sigma_min, rho):
|
53 |
+
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
|
54 |
+
return (sigmas, )
|
55 |
+
|
56 |
+
class ExponentialScheduler:
|
57 |
+
@classmethod
|
58 |
+
def INPUT_TYPES(s):
|
59 |
+
return {"required":
|
60 |
+
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
61 |
+
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
|
62 |
+
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
|
63 |
+
}
|
64 |
+
}
|
65 |
+
RETURN_TYPES = ("SIGMAS",)
|
66 |
+
CATEGORY = "sampling/custom_sampling/schedulers"
|
67 |
+
|
68 |
+
FUNCTION = "get_sigmas"
|
69 |
+
|
70 |
+
def get_sigmas(self, steps, sigma_max, sigma_min):
|
71 |
+
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
|
72 |
+
return (sigmas, )
|
73 |
+
|
74 |
+
class PolyexponentialScheduler:
|
75 |
+
@classmethod
|
76 |
+
def INPUT_TYPES(s):
|
77 |
+
return {"required":
|
78 |
+
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
79 |
+
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
|
80 |
+
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
|
81 |
+
"rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
|
82 |
+
}
|
83 |
+
}
|
84 |
+
RETURN_TYPES = ("SIGMAS",)
|
85 |
+
CATEGORY = "sampling/custom_sampling/schedulers"
|
86 |
+
|
87 |
+
FUNCTION = "get_sigmas"
|
88 |
+
|
89 |
+
def get_sigmas(self, steps, sigma_max, sigma_min, rho):
|
90 |
+
sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
|
91 |
+
return (sigmas, )
|
92 |
+
|
93 |
+
class SDTurboScheduler:
|
94 |
+
@classmethod
|
95 |
+
def INPUT_TYPES(s):
|
96 |
+
return {"required":
|
97 |
+
{"model": ("MODEL",),
|
98 |
+
"steps": ("INT", {"default": 1, "min": 1, "max": 10}),
|
99 |
+
"denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
100 |
+
}
|
101 |
+
}
|
102 |
+
RETURN_TYPES = ("SIGMAS",)
|
103 |
+
CATEGORY = "sampling/custom_sampling/schedulers"
|
104 |
+
|
105 |
+
FUNCTION = "get_sigmas"
|
106 |
+
|
107 |
+
def get_sigmas(self, model, steps, denoise):
|
108 |
+
start_step = 10 - int(10 * denoise)
|
109 |
+
timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
|
110 |
+
sigmas = model.model_sampling.sigma(timesteps)
|
111 |
+
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
|
112 |
+
return (sigmas, )
|
113 |
+
|
114 |
+
class VPScheduler:
|
115 |
+
@classmethod
|
116 |
+
def INPUT_TYPES(s):
|
117 |
+
return {"required":
|
118 |
+
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
119 |
+
"beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}), #TODO: fix default values
|
120 |
+
"beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1000.0, "step":0.01, "round": False}),
|
121 |
+
"eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}),
|
122 |
+
}
|
123 |
+
}
|
124 |
+
RETURN_TYPES = ("SIGMAS",)
|
125 |
+
CATEGORY = "sampling/custom_sampling/schedulers"
|
126 |
+
|
127 |
+
FUNCTION = "get_sigmas"
|
128 |
+
|
129 |
+
def get_sigmas(self, steps, beta_d, beta_min, eps_s):
|
130 |
+
sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s)
|
131 |
+
return (sigmas, )
|
132 |
+
|
133 |
+
class SplitSigmas:
|
134 |
+
@classmethod
|
135 |
+
def INPUT_TYPES(s):
|
136 |
+
return {"required":
|
137 |
+
{"sigmas": ("SIGMAS", ),
|
138 |
+
"step": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
139 |
+
}
|
140 |
+
}
|
141 |
+
RETURN_TYPES = ("SIGMAS","SIGMAS")
|
142 |
+
CATEGORY = "sampling/custom_sampling/sigmas"
|
143 |
+
|
144 |
+
FUNCTION = "get_sigmas"
|
145 |
+
|
146 |
+
def get_sigmas(self, sigmas, step):
|
147 |
+
sigmas1 = sigmas[:step + 1]
|
148 |
+
sigmas2 = sigmas[step:]
|
149 |
+
return (sigmas1, sigmas2)
|
150 |
+
|
151 |
+
class FlipSigmas:
|
152 |
+
@classmethod
|
153 |
+
def INPUT_TYPES(s):
|
154 |
+
return {"required":
|
155 |
+
{"sigmas": ("SIGMAS", ),
|
156 |
+
}
|
157 |
+
}
|
158 |
+
RETURN_TYPES = ("SIGMAS",)
|
159 |
+
CATEGORY = "sampling/custom_sampling/sigmas"
|
160 |
+
|
161 |
+
FUNCTION = "get_sigmas"
|
162 |
+
|
163 |
+
def get_sigmas(self, sigmas):
|
164 |
+
sigmas = sigmas.flip(0)
|
165 |
+
if sigmas[0] == 0:
|
166 |
+
sigmas[0] = 0.0001
|
167 |
+
return (sigmas,)
|
168 |
+
|
169 |
+
class KSamplerSelect:
|
170 |
+
@classmethod
|
171 |
+
def INPUT_TYPES(s):
|
172 |
+
return {"required":
|
173 |
+
{"sampler_name": (ldm_patched.modules.samplers.SAMPLER_NAMES, ),
|
174 |
+
}
|
175 |
+
}
|
176 |
+
RETURN_TYPES = ("SAMPLER",)
|
177 |
+
CATEGORY = "sampling/custom_sampling/samplers"
|
178 |
+
|
179 |
+
FUNCTION = "get_sampler"
|
180 |
+
|
181 |
+
def get_sampler(self, sampler_name):
|
182 |
+
sampler = ldm_patched.modules.samplers.sampler_object(sampler_name)
|
183 |
+
return (sampler, )
|
184 |
+
|
185 |
+
class SamplerDPMPP_2M_SDE:
|
186 |
+
@classmethod
|
187 |
+
def INPUT_TYPES(s):
|
188 |
+
return {"required":
|
189 |
+
{"solver_type": (['midpoint', 'heun'], ),
|
190 |
+
"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
|
191 |
+
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
|
192 |
+
"noise_device": (['gpu', 'cpu'], ),
|
193 |
+
}
|
194 |
+
}
|
195 |
+
RETURN_TYPES = ("SAMPLER",)
|
196 |
+
CATEGORY = "sampling/custom_sampling/samplers"
|
197 |
+
|
198 |
+
FUNCTION = "get_sampler"
|
199 |
+
|
200 |
+
def get_sampler(self, solver_type, eta, s_noise, noise_device):
|
201 |
+
if noise_device == 'cpu':
|
202 |
+
sampler_name = "dpmpp_2m_sde"
|
203 |
+
else:
|
204 |
+
sampler_name = "dpmpp_2m_sde_gpu"
|
205 |
+
sampler = ldm_patched.modules.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
|
206 |
+
return (sampler, )
|
207 |
+
|
208 |
+
|
209 |
+
class SamplerDPMPP_SDE:
|
210 |
+
@classmethod
|
211 |
+
def INPUT_TYPES(s):
|
212 |
+
return {"required":
|
213 |
+
{"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
|
214 |
+
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
|
215 |
+
"r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
|
216 |
+
"noise_device": (['gpu', 'cpu'], ),
|
217 |
+
}
|
218 |
+
}
|
219 |
+
RETURN_TYPES = ("SAMPLER",)
|
220 |
+
CATEGORY = "sampling/custom_sampling/samplers"
|
221 |
+
|
222 |
+
FUNCTION = "get_sampler"
|
223 |
+
|
224 |
+
def get_sampler(self, eta, s_noise, r, noise_device):
|
225 |
+
if noise_device == 'cpu':
|
226 |
+
sampler_name = "dpmpp_sde"
|
227 |
+
else:
|
228 |
+
sampler_name = "dpmpp_sde_gpu"
|
229 |
+
sampler = ldm_patched.modules.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
|
230 |
+
return (sampler, )
|
231 |
+
|
232 |
+
|
233 |
+
class SamplerTCD:
|
234 |
+
@classmethod
|
235 |
+
def INPUT_TYPES(s):
|
236 |
+
return {
|
237 |
+
"required": {
|
238 |
+
"eta": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
|
239 |
+
}
|
240 |
+
}
|
241 |
+
RETURN_TYPES = ("SAMPLER",)
|
242 |
+
CATEGORY = "sampling/custom_sampling/samplers"
|
243 |
+
|
244 |
+
FUNCTION = "get_sampler"
|
245 |
+
|
246 |
+
def get_sampler(self, eta=0.3):
|
247 |
+
sampler = ldm_patched.modules.samplers.ksampler("tcd", {"eta": eta})
|
248 |
+
return (sampler, )
|
249 |
+
|
250 |
+
|
251 |
+
class SamplerCustom:
|
252 |
+
@classmethod
|
253 |
+
def INPUT_TYPES(s):
|
254 |
+
return {"required":
|
255 |
+
{"model": ("MODEL",),
|
256 |
+
"add_noise": ("BOOLEAN", {"default": True}),
|
257 |
+
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
258 |
+
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
|
259 |
+
"positive": ("CONDITIONING", ),
|
260 |
+
"negative": ("CONDITIONING", ),
|
261 |
+
"sampler": ("SAMPLER", ),
|
262 |
+
"sigmas": ("SIGMAS", ),
|
263 |
+
"latent_image": ("LATENT", ),
|
264 |
+
}
|
265 |
+
}
|
266 |
+
|
267 |
+
RETURN_TYPES = ("LATENT","LATENT")
|
268 |
+
RETURN_NAMES = ("output", "denoised_output")
|
269 |
+
|
270 |
+
FUNCTION = "sample"
|
271 |
+
|
272 |
+
CATEGORY = "sampling/custom_sampling"
|
273 |
+
|
274 |
+
def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
|
275 |
+
latent = latent_image
|
276 |
+
latent_image = latent["samples"]
|
277 |
+
if not add_noise:
|
278 |
+
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
279 |
+
else:
|
280 |
+
batch_inds = latent["batch_index"] if "batch_index" in latent else None
|
281 |
+
noise = ldm_patched.modules.sample.prepare_noise(latent_image, noise_seed, batch_inds)
|
282 |
+
|
283 |
+
noise_mask = None
|
284 |
+
if "noise_mask" in latent:
|
285 |
+
noise_mask = latent["noise_mask"]
|
286 |
+
|
287 |
+
x0_output = {}
|
288 |
+
callback = ldm_patched.utils.latent_visualization.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)
|
289 |
+
|
290 |
+
disable_pbar = not ldm_patched.modules.utils.PROGRESS_BAR_ENABLED
|
291 |
+
samples = ldm_patched.modules.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)
|
292 |
+
|
293 |
+
out = latent.copy()
|
294 |
+
out["samples"] = samples
|
295 |
+
if "x0" in x0_output:
|
296 |
+
out_denoised = latent.copy()
|
297 |
+
out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
|
298 |
+
else:
|
299 |
+
out_denoised = out
|
300 |
+
return (out, out_denoised)
|
301 |
+
|
302 |
+
NODE_CLASS_MAPPINGS = {
|
303 |
+
"SamplerCustom": SamplerCustom,
|
304 |
+
"BasicScheduler": BasicScheduler,
|
305 |
+
"KarrasScheduler": KarrasScheduler,
|
306 |
+
"ExponentialScheduler": ExponentialScheduler,
|
307 |
+
"PolyexponentialScheduler": PolyexponentialScheduler,
|
308 |
+
"VPScheduler": VPScheduler,
|
309 |
+
"SDTurboScheduler": SDTurboScheduler,
|
310 |
+
"KSamplerSelect": KSamplerSelect,
|
311 |
+
"SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE,
|
312 |
+
"SamplerDPMPP_SDE": SamplerDPMPP_SDE,
|
313 |
+
"SamplerTCD": SamplerTCD,
|
314 |
+
"SplitSigmas": SplitSigmas,
|
315 |
+
"FlipSigmas": FlipSigmas,
|
316 |
+
}
|
ldm_patched/contrib/external_freelunch.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
#code originally taken from: https://github.com/ChenyangSi/FreeU (under MIT License)
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
def Fourier_filter(x, threshold, scale):
|
9 |
+
# FFT
|
10 |
+
x_freq = torch.fft.fftn(x.float(), dim=(-2, -1))
|
11 |
+
x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1))
|
12 |
+
|
13 |
+
B, C, H, W = x_freq.shape
|
14 |
+
mask = torch.ones((B, C, H, W), device=x.device)
|
15 |
+
|
16 |
+
crow, ccol = H // 2, W //2
|
17 |
+
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
|
18 |
+
x_freq = x_freq * mask
|
19 |
+
|
20 |
+
# IFFT
|
21 |
+
x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1))
|
22 |
+
x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real
|
23 |
+
|
24 |
+
return x_filtered.to(x.dtype)
|
25 |
+
|
26 |
+
|
27 |
+
class FreeU:
|
28 |
+
@classmethod
|
29 |
+
def INPUT_TYPES(s):
|
30 |
+
return {"required": { "model": ("MODEL",),
|
31 |
+
"b1": ("FLOAT", {"default": 1.1, "min": 0.0, "max": 10.0, "step": 0.01}),
|
32 |
+
"b2": ("FLOAT", {"default": 1.2, "min": 0.0, "max": 10.0, "step": 0.01}),
|
33 |
+
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
|
34 |
+
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
|
35 |
+
}}
|
36 |
+
RETURN_TYPES = ("MODEL",)
|
37 |
+
FUNCTION = "patch"
|
38 |
+
|
39 |
+
CATEGORY = "model_patches"
|
40 |
+
|
41 |
+
def patch(self, model, b1, b2, s1, s2):
|
42 |
+
model_channels = model.model.model_config.unet_config["model_channels"]
|
43 |
+
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
|
44 |
+
on_cpu_devices = {}
|
45 |
+
|
46 |
+
def output_block_patch(h, hsp, transformer_options):
|
47 |
+
scale = scale_dict.get(h.shape[1], None)
|
48 |
+
if scale is not None:
|
49 |
+
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * scale[0]
|
50 |
+
if hsp.device not in on_cpu_devices:
|
51 |
+
try:
|
52 |
+
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
|
53 |
+
except:
|
54 |
+
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
|
55 |
+
on_cpu_devices[hsp.device] = True
|
56 |
+
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
57 |
+
else:
|
58 |
+
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
59 |
+
|
60 |
+
return h, hsp
|
61 |
+
|
62 |
+
m = model.clone()
|
63 |
+
m.set_model_output_block_patch(output_block_patch)
|
64 |
+
return (m, )
|
65 |
+
|
66 |
+
class FreeU_V2:
|
67 |
+
@classmethod
|
68 |
+
def INPUT_TYPES(s):
|
69 |
+
return {"required": { "model": ("MODEL",),
|
70 |
+
"b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}),
|
71 |
+
"b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}),
|
72 |
+
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
|
73 |
+
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
|
74 |
+
}}
|
75 |
+
RETURN_TYPES = ("MODEL",)
|
76 |
+
FUNCTION = "patch"
|
77 |
+
|
78 |
+
CATEGORY = "model_patches"
|
79 |
+
|
80 |
+
def patch(self, model, b1, b2, s1, s2):
|
81 |
+
model_channels = model.model.model_config.unet_config["model_channels"]
|
82 |
+
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
|
83 |
+
on_cpu_devices = {}
|
84 |
+
|
85 |
+
def output_block_patch(h, hsp, transformer_options):
|
86 |
+
scale = scale_dict.get(h.shape[1], None)
|
87 |
+
if scale is not None:
|
88 |
+
hidden_mean = h.mean(1).unsqueeze(1)
|
89 |
+
B = hidden_mean.shape[0]
|
90 |
+
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
91 |
+
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
92 |
+
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
93 |
+
|
94 |
+
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1)
|
95 |
+
|
96 |
+
if hsp.device not in on_cpu_devices:
|
97 |
+
try:
|
98 |
+
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
|
99 |
+
except:
|
100 |
+
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
|
101 |
+
on_cpu_devices[hsp.device] = True
|
102 |
+
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
103 |
+
else:
|
104 |
+
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
105 |
+
|
106 |
+
return h, hsp
|
107 |
+
|
108 |
+
m = model.clone()
|
109 |
+
m.set_model_output_block_patch(output_block_patch)
|
110 |
+
return (m, )
|
111 |
+
|
112 |
+
NODE_CLASS_MAPPINGS = {
|
113 |
+
"FreeU": FreeU,
|
114 |
+
"FreeU_V2": FreeU_V2,
|
115 |
+
}
|
ldm_patched/contrib/external_hypernetwork.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import ldm_patched.modules.utils
|
4 |
+
import ldm_patched.utils.path_utils
|
5 |
+
import torch
|
6 |
+
|
7 |
+
def load_hypernetwork_patch(path, strength):
|
8 |
+
sd = ldm_patched.modules.utils.load_torch_file(path, safe_load=True)
|
9 |
+
activation_func = sd.get('activation_func', 'linear')
|
10 |
+
is_layer_norm = sd.get('is_layer_norm', False)
|
11 |
+
use_dropout = sd.get('use_dropout', False)
|
12 |
+
activate_output = sd.get('activate_output', False)
|
13 |
+
last_layer_dropout = sd.get('last_layer_dropout', False)
|
14 |
+
|
15 |
+
valid_activation = {
|
16 |
+
"linear": torch.nn.Identity,
|
17 |
+
"relu": torch.nn.ReLU,
|
18 |
+
"leakyrelu": torch.nn.LeakyReLU,
|
19 |
+
"elu": torch.nn.ELU,
|
20 |
+
"swish": torch.nn.Hardswish,
|
21 |
+
"tanh": torch.nn.Tanh,
|
22 |
+
"sigmoid": torch.nn.Sigmoid,
|
23 |
+
"softsign": torch.nn.Softsign,
|
24 |
+
"mish": torch.nn.Mish,
|
25 |
+
}
|
26 |
+
|
27 |
+
if activation_func not in valid_activation:
|
28 |
+
print("Unsupported Hypernetwork format, if you report it I might implement it.", path, " ", activation_func, is_layer_norm, use_dropout, activate_output, last_layer_dropout)
|
29 |
+
return None
|
30 |
+
|
31 |
+
out = {}
|
32 |
+
|
33 |
+
for d in sd:
|
34 |
+
try:
|
35 |
+
dim = int(d)
|
36 |
+
except:
|
37 |
+
continue
|
38 |
+
|
39 |
+
output = []
|
40 |
+
for index in [0, 1]:
|
41 |
+
attn_weights = sd[dim][index]
|
42 |
+
keys = attn_weights.keys()
|
43 |
+
|
44 |
+
linears = filter(lambda a: a.endswith(".weight"), keys)
|
45 |
+
linears = list(map(lambda a: a[:-len(".weight")], linears))
|
46 |
+
layers = []
|
47 |
+
|
48 |
+
i = 0
|
49 |
+
while i < len(linears):
|
50 |
+
lin_name = linears[i]
|
51 |
+
last_layer = (i == (len(linears) - 1))
|
52 |
+
penultimate_layer = (i == (len(linears) - 2))
|
53 |
+
|
54 |
+
lin_weight = attn_weights['{}.weight'.format(lin_name)]
|
55 |
+
lin_bias = attn_weights['{}.bias'.format(lin_name)]
|
56 |
+
layer = torch.nn.Linear(lin_weight.shape[1], lin_weight.shape[0])
|
57 |
+
layer.load_state_dict({"weight": lin_weight, "bias": lin_bias})
|
58 |
+
layers.append(layer)
|
59 |
+
if activation_func != "linear":
|
60 |
+
if (not last_layer) or (activate_output):
|
61 |
+
layers.append(valid_activation[activation_func]())
|
62 |
+
if is_layer_norm:
|
63 |
+
i += 1
|
64 |
+
ln_name = linears[i]
|
65 |
+
ln_weight = attn_weights['{}.weight'.format(ln_name)]
|
66 |
+
ln_bias = attn_weights['{}.bias'.format(ln_name)]
|
67 |
+
ln = torch.nn.LayerNorm(ln_weight.shape[0])
|
68 |
+
ln.load_state_dict({"weight": ln_weight, "bias": ln_bias})
|
69 |
+
layers.append(ln)
|
70 |
+
if use_dropout:
|
71 |
+
if (not last_layer) and (not penultimate_layer or last_layer_dropout):
|
72 |
+
layers.append(torch.nn.Dropout(p=0.3))
|
73 |
+
i += 1
|
74 |
+
|
75 |
+
output.append(torch.nn.Sequential(*layers))
|
76 |
+
out[dim] = torch.nn.ModuleList(output)
|
77 |
+
|
78 |
+
class hypernetwork_patch:
|
79 |
+
def __init__(self, hypernet, strength):
|
80 |
+
self.hypernet = hypernet
|
81 |
+
self.strength = strength
|
82 |
+
def __call__(self, q, k, v, extra_options):
|
83 |
+
dim = k.shape[-1]
|
84 |
+
if dim in self.hypernet:
|
85 |
+
hn = self.hypernet[dim]
|
86 |
+
k = k + hn[0](k) * self.strength
|
87 |
+
v = v + hn[1](v) * self.strength
|
88 |
+
|
89 |
+
return q, k, v
|
90 |
+
|
91 |
+
def to(self, device):
|
92 |
+
for d in self.hypernet.keys():
|
93 |
+
self.hypernet[d] = self.hypernet[d].to(device)
|
94 |
+
return self
|
95 |
+
|
96 |
+
return hypernetwork_patch(out, strength)
|
97 |
+
|
98 |
+
class HypernetworkLoader:
|
99 |
+
@classmethod
|
100 |
+
def INPUT_TYPES(s):
|
101 |
+
return {"required": { "model": ("MODEL",),
|
102 |
+
"hypernetwork_name": (ldm_patched.utils.path_utils.get_filename_list("hypernetworks"), ),
|
103 |
+
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
104 |
+
}}
|
105 |
+
RETURN_TYPES = ("MODEL",)
|
106 |
+
FUNCTION = "load_hypernetwork"
|
107 |
+
|
108 |
+
CATEGORY = "loaders"
|
109 |
+
|
110 |
+
def load_hypernetwork(self, model, hypernetwork_name, strength):
|
111 |
+
hypernetwork_path = ldm_patched.utils.path_utils.get_full_path("hypernetworks", hypernetwork_name)
|
112 |
+
model_hypernetwork = model.clone()
|
113 |
+
patch = load_hypernetwork_patch(hypernetwork_path, strength)
|
114 |
+
if patch is not None:
|
115 |
+
model_hypernetwork.set_model_attn1_patch(patch)
|
116 |
+
model_hypernetwork.set_model_attn2_patch(patch)
|
117 |
+
return (model_hypernetwork,)
|
118 |
+
|
119 |
+
NODE_CLASS_MAPPINGS = {
|
120 |
+
"HypernetworkLoader": HypernetworkLoader
|
121 |
+
}
|
ldm_patched/contrib/external_hypertile.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
#Taken from: https://github.com/tfernd/HyperTile/
|
4 |
+
|
5 |
+
import math
|
6 |
+
from einops import rearrange
|
7 |
+
# Use torch rng for consistency across generations
|
8 |
+
from torch import randint
|
9 |
+
|
10 |
+
def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int:
|
11 |
+
min_value = min(min_value, value)
|
12 |
+
|
13 |
+
# All big divisors of value (inclusive)
|
14 |
+
divisors = [i for i in range(min_value, value + 1) if value % i == 0]
|
15 |
+
|
16 |
+
ns = [value // i for i in divisors[:max_options]] # has at least 1 element
|
17 |
+
|
18 |
+
if len(ns) - 1 > 0:
|
19 |
+
idx = randint(low=0, high=len(ns) - 1, size=(1,)).item()
|
20 |
+
else:
|
21 |
+
idx = 0
|
22 |
+
|
23 |
+
return ns[idx]
|
24 |
+
|
25 |
+
class HyperTile:
|
26 |
+
@classmethod
|
27 |
+
def INPUT_TYPES(s):
|
28 |
+
return {"required": { "model": ("MODEL",),
|
29 |
+
"tile_size": ("INT", {"default": 256, "min": 1, "max": 2048}),
|
30 |
+
"swap_size": ("INT", {"default": 2, "min": 1, "max": 128}),
|
31 |
+
"max_depth": ("INT", {"default": 0, "min": 0, "max": 10}),
|
32 |
+
"scale_depth": ("BOOLEAN", {"default": False}),
|
33 |
+
}}
|
34 |
+
RETURN_TYPES = ("MODEL",)
|
35 |
+
FUNCTION = "patch"
|
36 |
+
|
37 |
+
CATEGORY = "model_patches"
|
38 |
+
|
39 |
+
def patch(self, model, tile_size, swap_size, max_depth, scale_depth):
|
40 |
+
model_channels = model.model.model_config.unet_config["model_channels"]
|
41 |
+
|
42 |
+
latent_tile_size = max(32, tile_size) // 8
|
43 |
+
self.temp = None
|
44 |
+
|
45 |
+
def hypertile_in(q, k, v, extra_options):
|
46 |
+
model_chans = q.shape[-2]
|
47 |
+
orig_shape = extra_options['original_shape']
|
48 |
+
apply_to = []
|
49 |
+
for i in range(max_depth + 1):
|
50 |
+
apply_to.append((orig_shape[-2] / (2 ** i)) * (orig_shape[-1] / (2 ** i)))
|
51 |
+
|
52 |
+
if model_chans in apply_to:
|
53 |
+
shape = extra_options["original_shape"]
|
54 |
+
aspect_ratio = shape[-1] / shape[-2]
|
55 |
+
|
56 |
+
hw = q.size(1)
|
57 |
+
h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio))
|
58 |
+
|
59 |
+
factor = (2 ** apply_to.index(model_chans)) if scale_depth else 1
|
60 |
+
nh = random_divisor(h, latent_tile_size * factor, swap_size)
|
61 |
+
nw = random_divisor(w, latent_tile_size * factor, swap_size)
|
62 |
+
|
63 |
+
if nh * nw > 1:
|
64 |
+
q = rearrange(q, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw)
|
65 |
+
self.temp = (nh, nw, h, w)
|
66 |
+
return q, k, v
|
67 |
+
|
68 |
+
return q, k, v
|
69 |
+
def hypertile_out(out, extra_options):
|
70 |
+
if self.temp is not None:
|
71 |
+
nh, nw, h, w = self.temp
|
72 |
+
self.temp = None
|
73 |
+
out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw)
|
74 |
+
out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw)
|
75 |
+
return out
|
76 |
+
|
77 |
+
|
78 |
+
m = model.clone()
|
79 |
+
m.set_model_attn1_patch(hypertile_in)
|
80 |
+
m.set_model_attn1_output_patch(hypertile_out)
|
81 |
+
return (m, )
|
82 |
+
|
83 |
+
NODE_CLASS_MAPPINGS = {
|
84 |
+
"HyperTile": HyperTile,
|
85 |
+
}
|
ldm_patched/contrib/external_images.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import ldm_patched.contrib.external
|
4 |
+
import ldm_patched.utils.path_utils
|
5 |
+
from ldm_patched.modules.args_parser import args
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
from PIL.PngImagePlugin import PngInfo
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import json
|
12 |
+
import os
|
13 |
+
|
14 |
+
MAX_RESOLUTION = ldm_patched.contrib.external.MAX_RESOLUTION
|
15 |
+
|
16 |
+
class ImageCrop:
|
17 |
+
@classmethod
|
18 |
+
def INPUT_TYPES(s):
|
19 |
+
return {"required": { "image": ("IMAGE",),
|
20 |
+
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
21 |
+
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
22 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
23 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
24 |
+
}}
|
25 |
+
RETURN_TYPES = ("IMAGE",)
|
26 |
+
FUNCTION = "crop"
|
27 |
+
|
28 |
+
CATEGORY = "image/transform"
|
29 |
+
|
30 |
+
def crop(self, image, width, height, x, y):
|
31 |
+
x = min(x, image.shape[2] - 1)
|
32 |
+
y = min(y, image.shape[1] - 1)
|
33 |
+
to_x = width + x
|
34 |
+
to_y = height + y
|
35 |
+
img = image[:,y:to_y, x:to_x, :]
|
36 |
+
return (img,)
|
37 |
+
|
38 |
+
class RepeatImageBatch:
|
39 |
+
@classmethod
|
40 |
+
def INPUT_TYPES(s):
|
41 |
+
return {"required": { "image": ("IMAGE",),
|
42 |
+
"amount": ("INT", {"default": 1, "min": 1, "max": 64}),
|
43 |
+
}}
|
44 |
+
RETURN_TYPES = ("IMAGE",)
|
45 |
+
FUNCTION = "repeat"
|
46 |
+
|
47 |
+
CATEGORY = "image/batch"
|
48 |
+
|
49 |
+
def repeat(self, image, amount):
|
50 |
+
s = image.repeat((amount, 1,1,1))
|
51 |
+
return (s,)
|
52 |
+
|
53 |
+
class SaveAnimatedWEBP:
|
54 |
+
def __init__(self):
|
55 |
+
self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
|
56 |
+
self.type = "output"
|
57 |
+
self.prefix_append = ""
|
58 |
+
|
59 |
+
methods = {"default": 4, "fastest": 0, "slowest": 6}
|
60 |
+
@classmethod
|
61 |
+
def INPUT_TYPES(s):
|
62 |
+
return {"required":
|
63 |
+
{"images": ("IMAGE", ),
|
64 |
+
"filename_prefix": ("STRING", {"default": "ldm_patched"}),
|
65 |
+
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
|
66 |
+
"lossless": ("BOOLEAN", {"default": True}),
|
67 |
+
"quality": ("INT", {"default": 80, "min": 0, "max": 100}),
|
68 |
+
"method": (list(s.methods.keys()),),
|
69 |
+
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
|
70 |
+
},
|
71 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
72 |
+
}
|
73 |
+
|
74 |
+
RETURN_TYPES = ()
|
75 |
+
FUNCTION = "save_images"
|
76 |
+
|
77 |
+
OUTPUT_NODE = True
|
78 |
+
|
79 |
+
CATEGORY = "image/animation"
|
80 |
+
|
81 |
+
def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None):
|
82 |
+
method = self.methods.get(method)
|
83 |
+
filename_prefix += self.prefix_append
|
84 |
+
full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
85 |
+
results = list()
|
86 |
+
pil_images = []
|
87 |
+
for image in images:
|
88 |
+
i = 255. * image.cpu().numpy()
|
89 |
+
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
90 |
+
pil_images.append(img)
|
91 |
+
|
92 |
+
metadata = pil_images[0].getexif()
|
93 |
+
if not args.disable_server_info:
|
94 |
+
if prompt is not None:
|
95 |
+
metadata[0x0110] = "prompt:{}".format(json.dumps(prompt))
|
96 |
+
if extra_pnginfo is not None:
|
97 |
+
inital_exif = 0x010f
|
98 |
+
for x in extra_pnginfo:
|
99 |
+
metadata[inital_exif] = "{}:{}".format(x, json.dumps(extra_pnginfo[x]))
|
100 |
+
inital_exif -= 1
|
101 |
+
|
102 |
+
if num_frames == 0:
|
103 |
+
num_frames = len(pil_images)
|
104 |
+
|
105 |
+
c = len(pil_images)
|
106 |
+
for i in range(0, c, num_frames):
|
107 |
+
file = f"{filename}_{counter:05}_.webp"
|
108 |
+
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], exif=metadata, lossless=lossless, quality=quality, method=method)
|
109 |
+
results.append({
|
110 |
+
"filename": file,
|
111 |
+
"subfolder": subfolder,
|
112 |
+
"type": self.type
|
113 |
+
})
|
114 |
+
counter += 1
|
115 |
+
|
116 |
+
animated = num_frames != 1
|
117 |
+
return { "ui": { "images": results, "animated": (animated,) } }
|
118 |
+
|
119 |
+
class SaveAnimatedPNG:
|
120 |
+
def __init__(self):
|
121 |
+
self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
|
122 |
+
self.type = "output"
|
123 |
+
self.prefix_append = ""
|
124 |
+
|
125 |
+
@classmethod
|
126 |
+
def INPUT_TYPES(s):
|
127 |
+
return {"required":
|
128 |
+
{"images": ("IMAGE", ),
|
129 |
+
"filename_prefix": ("STRING", {"default": "ldm_patched"}),
|
130 |
+
"fps": ("FLOAT", {"default": 6.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
|
131 |
+
"compress_level": ("INT", {"default": 4, "min": 0, "max": 9})
|
132 |
+
},
|
133 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
134 |
+
}
|
135 |
+
|
136 |
+
RETURN_TYPES = ()
|
137 |
+
FUNCTION = "save_images"
|
138 |
+
|
139 |
+
OUTPUT_NODE = True
|
140 |
+
|
141 |
+
CATEGORY = "image/animation"
|
142 |
+
|
143 |
+
def save_images(self, images, fps, compress_level, filename_prefix="ldm_patched", prompt=None, extra_pnginfo=None):
|
144 |
+
filename_prefix += self.prefix_append
|
145 |
+
full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
146 |
+
results = list()
|
147 |
+
pil_images = []
|
148 |
+
for image in images:
|
149 |
+
i = 255. * image.cpu().numpy()
|
150 |
+
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
151 |
+
pil_images.append(img)
|
152 |
+
|
153 |
+
metadata = None
|
154 |
+
if not args.disable_server_info:
|
155 |
+
metadata = PngInfo()
|
156 |
+
if prompt is not None:
|
157 |
+
metadata.add(b"ldm_patched", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(prompt).encode("latin-1", "strict"), after_idat=True)
|
158 |
+
if extra_pnginfo is not None:
|
159 |
+
for x in extra_pnginfo:
|
160 |
+
metadata.add(b"ldm_patched", x.encode("latin-1", "strict") + b"\0" + json.dumps(extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True)
|
161 |
+
|
162 |
+
file = f"{filename}_{counter:05}_.png"
|
163 |
+
pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:])
|
164 |
+
results.append({
|
165 |
+
"filename": file,
|
166 |
+
"subfolder": subfolder,
|
167 |
+
"type": self.type
|
168 |
+
})
|
169 |
+
|
170 |
+
return { "ui": { "images": results, "animated": (True,)} }
|
171 |
+
|
172 |
+
NODE_CLASS_MAPPINGS = {
|
173 |
+
"ImageCrop": ImageCrop,
|
174 |
+
"RepeatImageBatch": RepeatImageBatch,
|
175 |
+
"SaveAnimatedWEBP": SaveAnimatedWEBP,
|
176 |
+
"SaveAnimatedPNG": SaveAnimatedPNG,
|
177 |
+
}
|
ldm_patched/contrib/external_latent.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import ldm_patched.modules.utils
|
4 |
+
import torch
|
5 |
+
|
6 |
+
def reshape_latent_to(target_shape, latent):
|
7 |
+
if latent.shape[1:] != target_shape[1:]:
|
8 |
+
latent = ldm_patched.modules.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center")
|
9 |
+
return ldm_patched.modules.utils.repeat_to_batch_size(latent, target_shape[0])
|
10 |
+
|
11 |
+
|
12 |
+
class LatentAdd:
|
13 |
+
@classmethod
|
14 |
+
def INPUT_TYPES(s):
|
15 |
+
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
16 |
+
|
17 |
+
RETURN_TYPES = ("LATENT",)
|
18 |
+
FUNCTION = "op"
|
19 |
+
|
20 |
+
CATEGORY = "latent/advanced"
|
21 |
+
|
22 |
+
def op(self, samples1, samples2):
|
23 |
+
samples_out = samples1.copy()
|
24 |
+
|
25 |
+
s1 = samples1["samples"]
|
26 |
+
s2 = samples2["samples"]
|
27 |
+
|
28 |
+
s2 = reshape_latent_to(s1.shape, s2)
|
29 |
+
samples_out["samples"] = s1 + s2
|
30 |
+
return (samples_out,)
|
31 |
+
|
32 |
+
class LatentSubtract:
|
33 |
+
@classmethod
|
34 |
+
def INPUT_TYPES(s):
|
35 |
+
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
36 |
+
|
37 |
+
RETURN_TYPES = ("LATENT",)
|
38 |
+
FUNCTION = "op"
|
39 |
+
|
40 |
+
CATEGORY = "latent/advanced"
|
41 |
+
|
42 |
+
def op(self, samples1, samples2):
|
43 |
+
samples_out = samples1.copy()
|
44 |
+
|
45 |
+
s1 = samples1["samples"]
|
46 |
+
s2 = samples2["samples"]
|
47 |
+
|
48 |
+
s2 = reshape_latent_to(s1.shape, s2)
|
49 |
+
samples_out["samples"] = s1 - s2
|
50 |
+
return (samples_out,)
|
51 |
+
|
52 |
+
class LatentMultiply:
|
53 |
+
@classmethod
|
54 |
+
def INPUT_TYPES(s):
|
55 |
+
return {"required": { "samples": ("LATENT",),
|
56 |
+
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
57 |
+
}}
|
58 |
+
|
59 |
+
RETURN_TYPES = ("LATENT",)
|
60 |
+
FUNCTION = "op"
|
61 |
+
|
62 |
+
CATEGORY = "latent/advanced"
|
63 |
+
|
64 |
+
def op(self, samples, multiplier):
|
65 |
+
samples_out = samples.copy()
|
66 |
+
|
67 |
+
s1 = samples["samples"]
|
68 |
+
samples_out["samples"] = s1 * multiplier
|
69 |
+
return (samples_out,)
|
70 |
+
|
71 |
+
class LatentInterpolate:
|
72 |
+
@classmethod
|
73 |
+
def INPUT_TYPES(s):
|
74 |
+
return {"required": { "samples1": ("LATENT",),
|
75 |
+
"samples2": ("LATENT",),
|
76 |
+
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
77 |
+
}}
|
78 |
+
|
79 |
+
RETURN_TYPES = ("LATENT",)
|
80 |
+
FUNCTION = "op"
|
81 |
+
|
82 |
+
CATEGORY = "latent/advanced"
|
83 |
+
|
84 |
+
def op(self, samples1, samples2, ratio):
|
85 |
+
samples_out = samples1.copy()
|
86 |
+
|
87 |
+
s1 = samples1["samples"]
|
88 |
+
s2 = samples2["samples"]
|
89 |
+
|
90 |
+
s2 = reshape_latent_to(s1.shape, s2)
|
91 |
+
|
92 |
+
m1 = torch.linalg.vector_norm(s1, dim=(1))
|
93 |
+
m2 = torch.linalg.vector_norm(s2, dim=(1))
|
94 |
+
|
95 |
+
s1 = torch.nan_to_num(s1 / m1)
|
96 |
+
s2 = torch.nan_to_num(s2 / m2)
|
97 |
+
|
98 |
+
t = (s1 * ratio + s2 * (1.0 - ratio))
|
99 |
+
mt = torch.linalg.vector_norm(t, dim=(1))
|
100 |
+
st = torch.nan_to_num(t / mt)
|
101 |
+
|
102 |
+
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
|
103 |
+
return (samples_out,)
|
104 |
+
|
105 |
+
class LatentBatch:
|
106 |
+
@classmethod
|
107 |
+
def INPUT_TYPES(s):
|
108 |
+
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
|
109 |
+
|
110 |
+
RETURN_TYPES = ("LATENT",)
|
111 |
+
FUNCTION = "batch"
|
112 |
+
|
113 |
+
CATEGORY = "latent/batch"
|
114 |
+
|
115 |
+
def batch(self, samples1, samples2):
|
116 |
+
samples_out = samples1.copy()
|
117 |
+
s1 = samples1["samples"]
|
118 |
+
s2 = samples2["samples"]
|
119 |
+
|
120 |
+
if s1.shape[1:] != s2.shape[1:]:
|
121 |
+
s2 = ldm_patched.modules.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center")
|
122 |
+
s = torch.cat((s1, s2), dim=0)
|
123 |
+
samples_out["samples"] = s
|
124 |
+
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
|
125 |
+
return (samples_out,)
|
126 |
+
|
127 |
+
class LatentBatchSeedBehavior:
|
128 |
+
@classmethod
|
129 |
+
def INPUT_TYPES(s):
|
130 |
+
return {"required": { "samples": ("LATENT",),
|
131 |
+
"seed_behavior": (["random", "fixed"],),}}
|
132 |
+
|
133 |
+
RETURN_TYPES = ("LATENT",)
|
134 |
+
FUNCTION = "op"
|
135 |
+
|
136 |
+
CATEGORY = "latent/advanced"
|
137 |
+
|
138 |
+
def op(self, samples, seed_behavior):
|
139 |
+
samples_out = samples.copy()
|
140 |
+
latent = samples["samples"]
|
141 |
+
if seed_behavior == "random":
|
142 |
+
if 'batch_index' in samples_out:
|
143 |
+
samples_out.pop('batch_index')
|
144 |
+
elif seed_behavior == "fixed":
|
145 |
+
batch_number = samples_out.get("batch_index", [0])[0]
|
146 |
+
samples_out["batch_index"] = [batch_number] * latent.shape[0]
|
147 |
+
|
148 |
+
return (samples_out,)
|
149 |
+
|
150 |
+
NODE_CLASS_MAPPINGS = {
|
151 |
+
"LatentAdd": LatentAdd,
|
152 |
+
"LatentSubtract": LatentSubtract,
|
153 |
+
"LatentMultiply": LatentMultiply,
|
154 |
+
"LatentInterpolate": LatentInterpolate,
|
155 |
+
"LatentBatch": LatentBatch,
|
156 |
+
"LatentBatchSeedBehavior": LatentBatchSeedBehavior,
|
157 |
+
}
|
ldm_patched/contrib/external_mask.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import scipy.ndimage
|
5 |
+
import torch
|
6 |
+
import ldm_patched.modules.utils
|
7 |
+
|
8 |
+
from ldm_patched.contrib.external import MAX_RESOLUTION
|
9 |
+
|
10 |
+
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
|
11 |
+
source = source.to(destination.device)
|
12 |
+
if resize_source:
|
13 |
+
source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
|
14 |
+
|
15 |
+
source = ldm_patched.modules.utils.repeat_to_batch_size(source, destination.shape[0])
|
16 |
+
|
17 |
+
x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
|
18 |
+
y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))
|
19 |
+
|
20 |
+
left, top = (x // multiplier, y // multiplier)
|
21 |
+
right, bottom = (left + source.shape[3], top + source.shape[2],)
|
22 |
+
|
23 |
+
if mask is None:
|
24 |
+
mask = torch.ones_like(source)
|
25 |
+
else:
|
26 |
+
mask = mask.to(destination.device, copy=True)
|
27 |
+
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[2], source.shape[3]), mode="bilinear")
|
28 |
+
mask = ldm_patched.modules.utils.repeat_to_batch_size(mask, source.shape[0])
|
29 |
+
|
30 |
+
# calculate the bounds of the source that will be overlapping the destination
|
31 |
+
# this prevents the source trying to overwrite latent pixels that are out of bounds
|
32 |
+
# of the destination
|
33 |
+
visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)
|
34 |
+
|
35 |
+
mask = mask[:, :, :visible_height, :visible_width]
|
36 |
+
inverse_mask = torch.ones_like(mask) - mask
|
37 |
+
|
38 |
+
source_portion = mask * source[:, :, :visible_height, :visible_width]
|
39 |
+
destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
|
40 |
+
|
41 |
+
destination[:, :, top:bottom, left:right] = source_portion + destination_portion
|
42 |
+
return destination
|
43 |
+
|
44 |
+
class LatentCompositeMasked:
|
45 |
+
@classmethod
|
46 |
+
def INPUT_TYPES(s):
|
47 |
+
return {
|
48 |
+
"required": {
|
49 |
+
"destination": ("LATENT",),
|
50 |
+
"source": ("LATENT",),
|
51 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
52 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
53 |
+
"resize_source": ("BOOLEAN", {"default": False}),
|
54 |
+
},
|
55 |
+
"optional": {
|
56 |
+
"mask": ("MASK",),
|
57 |
+
}
|
58 |
+
}
|
59 |
+
RETURN_TYPES = ("LATENT",)
|
60 |
+
FUNCTION = "composite"
|
61 |
+
|
62 |
+
CATEGORY = "latent"
|
63 |
+
|
64 |
+
def composite(self, destination, source, x, y, resize_source, mask = None):
|
65 |
+
output = destination.copy()
|
66 |
+
destination = destination["samples"].clone()
|
67 |
+
source = source["samples"]
|
68 |
+
output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
|
69 |
+
return (output,)
|
70 |
+
|
71 |
+
class ImageCompositeMasked:
|
72 |
+
@classmethod
|
73 |
+
def INPUT_TYPES(s):
|
74 |
+
return {
|
75 |
+
"required": {
|
76 |
+
"destination": ("IMAGE",),
|
77 |
+
"source": ("IMAGE",),
|
78 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
79 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
80 |
+
"resize_source": ("BOOLEAN", {"default": False}),
|
81 |
+
},
|
82 |
+
"optional": {
|
83 |
+
"mask": ("MASK",),
|
84 |
+
}
|
85 |
+
}
|
86 |
+
RETURN_TYPES = ("IMAGE",)
|
87 |
+
FUNCTION = "composite"
|
88 |
+
|
89 |
+
CATEGORY = "image"
|
90 |
+
|
91 |
+
def composite(self, destination, source, x, y, resize_source, mask = None):
|
92 |
+
destination = destination.clone().movedim(-1, 1)
|
93 |
+
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
|
94 |
+
return (output,)
|
95 |
+
|
96 |
+
class MaskToImage:
|
97 |
+
@classmethod
|
98 |
+
def INPUT_TYPES(s):
|
99 |
+
return {
|
100 |
+
"required": {
|
101 |
+
"mask": ("MASK",),
|
102 |
+
}
|
103 |
+
}
|
104 |
+
|
105 |
+
CATEGORY = "mask"
|
106 |
+
|
107 |
+
RETURN_TYPES = ("IMAGE",)
|
108 |
+
FUNCTION = "mask_to_image"
|
109 |
+
|
110 |
+
def mask_to_image(self, mask):
|
111 |
+
result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
112 |
+
return (result,)
|
113 |
+
|
114 |
+
class ImageToMask:
|
115 |
+
@classmethod
|
116 |
+
def INPUT_TYPES(s):
|
117 |
+
return {
|
118 |
+
"required": {
|
119 |
+
"image": ("IMAGE",),
|
120 |
+
"channel": (["red", "green", "blue", "alpha"],),
|
121 |
+
}
|
122 |
+
}
|
123 |
+
|
124 |
+
CATEGORY = "mask"
|
125 |
+
|
126 |
+
RETURN_TYPES = ("MASK",)
|
127 |
+
FUNCTION = "image_to_mask"
|
128 |
+
|
129 |
+
def image_to_mask(self, image, channel):
|
130 |
+
channels = ["red", "green", "blue", "alpha"]
|
131 |
+
mask = image[:, :, :, channels.index(channel)]
|
132 |
+
return (mask,)
|
133 |
+
|
134 |
+
class ImageColorToMask:
|
135 |
+
@classmethod
|
136 |
+
def INPUT_TYPES(s):
|
137 |
+
return {
|
138 |
+
"required": {
|
139 |
+
"image": ("IMAGE",),
|
140 |
+
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
|
141 |
+
}
|
142 |
+
}
|
143 |
+
|
144 |
+
CATEGORY = "mask"
|
145 |
+
|
146 |
+
RETURN_TYPES = ("MASK",)
|
147 |
+
FUNCTION = "image_to_mask"
|
148 |
+
|
149 |
+
def image_to_mask(self, image, color):
|
150 |
+
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
|
151 |
+
temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2]
|
152 |
+
mask = torch.where(temp == color, 255, 0).float()
|
153 |
+
return (mask,)
|
154 |
+
|
155 |
+
class SolidMask:
|
156 |
+
@classmethod
|
157 |
+
def INPUT_TYPES(cls):
|
158 |
+
return {
|
159 |
+
"required": {
|
160 |
+
"value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
161 |
+
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
162 |
+
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
163 |
+
}
|
164 |
+
}
|
165 |
+
|
166 |
+
CATEGORY = "mask"
|
167 |
+
|
168 |
+
RETURN_TYPES = ("MASK",)
|
169 |
+
|
170 |
+
FUNCTION = "solid"
|
171 |
+
|
172 |
+
def solid(self, value, width, height):
|
173 |
+
out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu")
|
174 |
+
return (out,)
|
175 |
+
|
176 |
+
class InvertMask:
|
177 |
+
@classmethod
|
178 |
+
def INPUT_TYPES(cls):
|
179 |
+
return {
|
180 |
+
"required": {
|
181 |
+
"mask": ("MASK",),
|
182 |
+
}
|
183 |
+
}
|
184 |
+
|
185 |
+
CATEGORY = "mask"
|
186 |
+
|
187 |
+
RETURN_TYPES = ("MASK",)
|
188 |
+
|
189 |
+
FUNCTION = "invert"
|
190 |
+
|
191 |
+
def invert(self, mask):
|
192 |
+
out = 1.0 - mask
|
193 |
+
return (out,)
|
194 |
+
|
195 |
+
class CropMask:
|
196 |
+
@classmethod
|
197 |
+
def INPUT_TYPES(cls):
|
198 |
+
return {
|
199 |
+
"required": {
|
200 |
+
"mask": ("MASK",),
|
201 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
202 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
203 |
+
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
204 |
+
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
205 |
+
}
|
206 |
+
}
|
207 |
+
|
208 |
+
CATEGORY = "mask"
|
209 |
+
|
210 |
+
RETURN_TYPES = ("MASK",)
|
211 |
+
|
212 |
+
FUNCTION = "crop"
|
213 |
+
|
214 |
+
def crop(self, mask, x, y, width, height):
|
215 |
+
mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
|
216 |
+
out = mask[:, y:y + height, x:x + width]
|
217 |
+
return (out,)
|
218 |
+
|
219 |
+
class MaskComposite:
|
220 |
+
@classmethod
|
221 |
+
def INPUT_TYPES(cls):
|
222 |
+
return {
|
223 |
+
"required": {
|
224 |
+
"destination": ("MASK",),
|
225 |
+
"source": ("MASK",),
|
226 |
+
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
227 |
+
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
228 |
+
"operation": (["multiply", "add", "subtract", "and", "or", "xor"],),
|
229 |
+
}
|
230 |
+
}
|
231 |
+
|
232 |
+
CATEGORY = "mask"
|
233 |
+
|
234 |
+
RETURN_TYPES = ("MASK",)
|
235 |
+
|
236 |
+
FUNCTION = "combine"
|
237 |
+
|
238 |
+
def combine(self, destination, source, x, y, operation):
|
239 |
+
output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone()
|
240 |
+
source = source.reshape((-1, source.shape[-2], source.shape[-1]))
|
241 |
+
|
242 |
+
left, top = (x, y,)
|
243 |
+
right, bottom = (min(left + source.shape[-1], destination.shape[-1]), min(top + source.shape[-2], destination.shape[-2]))
|
244 |
+
visible_width, visible_height = (right - left, bottom - top,)
|
245 |
+
|
246 |
+
source_portion = source[:, :visible_height, :visible_width]
|
247 |
+
destination_portion = destination[:, top:bottom, left:right]
|
248 |
+
|
249 |
+
if operation == "multiply":
|
250 |
+
output[:, top:bottom, left:right] = destination_portion * source_portion
|
251 |
+
elif operation == "add":
|
252 |
+
output[:, top:bottom, left:right] = destination_portion + source_portion
|
253 |
+
elif operation == "subtract":
|
254 |
+
output[:, top:bottom, left:right] = destination_portion - source_portion
|
255 |
+
elif operation == "and":
|
256 |
+
output[:, top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float()
|
257 |
+
elif operation == "or":
|
258 |
+
output[:, top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float()
|
259 |
+
elif operation == "xor":
|
260 |
+
output[:, top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float()
|
261 |
+
|
262 |
+
output = torch.clamp(output, 0.0, 1.0)
|
263 |
+
|
264 |
+
return (output,)
|
265 |
+
|
266 |
+
class FeatherMask:
|
267 |
+
@classmethod
|
268 |
+
def INPUT_TYPES(cls):
|
269 |
+
return {
|
270 |
+
"required": {
|
271 |
+
"mask": ("MASK",),
|
272 |
+
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
273 |
+
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
274 |
+
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
275 |
+
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
276 |
+
}
|
277 |
+
}
|
278 |
+
|
279 |
+
CATEGORY = "mask"
|
280 |
+
|
281 |
+
RETURN_TYPES = ("MASK",)
|
282 |
+
|
283 |
+
FUNCTION = "feather"
|
284 |
+
|
285 |
+
def feather(self, mask, left, top, right, bottom):
|
286 |
+
output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone()
|
287 |
+
|
288 |
+
left = min(left, output.shape[-1])
|
289 |
+
right = min(right, output.shape[-1])
|
290 |
+
top = min(top, output.shape[-2])
|
291 |
+
bottom = min(bottom, output.shape[-2])
|
292 |
+
|
293 |
+
for x in range(left):
|
294 |
+
feather_rate = (x + 1.0) / left
|
295 |
+
output[:, :, x] *= feather_rate
|
296 |
+
|
297 |
+
for x in range(right):
|
298 |
+
feather_rate = (x + 1) / right
|
299 |
+
output[:, :, -x] *= feather_rate
|
300 |
+
|
301 |
+
for y in range(top):
|
302 |
+
feather_rate = (y + 1) / top
|
303 |
+
output[:, y, :] *= feather_rate
|
304 |
+
|
305 |
+
for y in range(bottom):
|
306 |
+
feather_rate = (y + 1) / bottom
|
307 |
+
output[:, -y, :] *= feather_rate
|
308 |
+
|
309 |
+
return (output,)
|
310 |
+
|
311 |
+
class GrowMask:
|
312 |
+
@classmethod
|
313 |
+
def INPUT_TYPES(cls):
|
314 |
+
return {
|
315 |
+
"required": {
|
316 |
+
"mask": ("MASK",),
|
317 |
+
"expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
|
318 |
+
"tapered_corners": ("BOOLEAN", {"default": True}),
|
319 |
+
},
|
320 |
+
}
|
321 |
+
|
322 |
+
CATEGORY = "mask"
|
323 |
+
|
324 |
+
RETURN_TYPES = ("MASK",)
|
325 |
+
|
326 |
+
FUNCTION = "expand_mask"
|
327 |
+
|
328 |
+
def expand_mask(self, mask, expand, tapered_corners):
|
329 |
+
c = 0 if tapered_corners else 1
|
330 |
+
kernel = np.array([[c, 1, c],
|
331 |
+
[1, 1, 1],
|
332 |
+
[c, 1, c]])
|
333 |
+
mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
|
334 |
+
out = []
|
335 |
+
for m in mask:
|
336 |
+
output = m.numpy()
|
337 |
+
for _ in range(abs(expand)):
|
338 |
+
if expand < 0:
|
339 |
+
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
|
340 |
+
else:
|
341 |
+
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
|
342 |
+
output = torch.from_numpy(output)
|
343 |
+
out.append(output)
|
344 |
+
return (torch.stack(out, dim=0),)
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
NODE_CLASS_MAPPINGS = {
|
349 |
+
"LatentCompositeMasked": LatentCompositeMasked,
|
350 |
+
"ImageCompositeMasked": ImageCompositeMasked,
|
351 |
+
"MaskToImage": MaskToImage,
|
352 |
+
"ImageToMask": ImageToMask,
|
353 |
+
"ImageColorToMask": ImageColorToMask,
|
354 |
+
"SolidMask": SolidMask,
|
355 |
+
"InvertMask": InvertMask,
|
356 |
+
"CropMask": CropMask,
|
357 |
+
"MaskComposite": MaskComposite,
|
358 |
+
"FeatherMask": FeatherMask,
|
359 |
+
"GrowMask": GrowMask,
|
360 |
+
}
|
361 |
+
|
362 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
363 |
+
"ImageToMask": "Convert Image to Mask",
|
364 |
+
"MaskToImage": "Convert Mask to Image",
|
365 |
+
}
|
ldm_patched/contrib/external_model_advanced.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import ldm_patched.utils.path_utils
|
4 |
+
import ldm_patched.modules.sd
|
5 |
+
import ldm_patched.modules.model_sampling
|
6 |
+
import torch
|
7 |
+
|
8 |
+
class LCM(ldm_patched.modules.model_sampling.EPS):
|
9 |
+
def calculate_denoised(self, sigma, model_output, model_input):
|
10 |
+
timestep = self.timestep(sigma).view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
11 |
+
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
12 |
+
x0 = model_input - model_output * sigma
|
13 |
+
|
14 |
+
sigma_data = 0.5
|
15 |
+
scaled_timestep = timestep * 10.0 #timestep_scaling
|
16 |
+
|
17 |
+
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
|
18 |
+
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
|
19 |
+
|
20 |
+
return c_out * x0 + c_skip * model_input
|
21 |
+
|
22 |
+
class ModelSamplingDiscreteDistilled(ldm_patched.modules.model_sampling.ModelSamplingDiscrete):
|
23 |
+
original_timesteps = 50
|
24 |
+
|
25 |
+
def __init__(self, model_config=None):
|
26 |
+
super().__init__(model_config)
|
27 |
+
|
28 |
+
self.skip_steps = self.num_timesteps // self.original_timesteps
|
29 |
+
|
30 |
+
sigmas_valid = torch.zeros((self.original_timesteps), dtype=torch.float32)
|
31 |
+
for x in range(self.original_timesteps):
|
32 |
+
sigmas_valid[self.original_timesteps - 1 - x] = self.sigmas[self.num_timesteps - 1 - x * self.skip_steps]
|
33 |
+
|
34 |
+
self.set_sigmas(sigmas_valid)
|
35 |
+
|
36 |
+
def timestep(self, sigma):
|
37 |
+
log_sigma = sigma.log()
|
38 |
+
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
39 |
+
return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device)
|
40 |
+
|
41 |
+
def sigma(self, timestep):
|
42 |
+
t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
|
43 |
+
low_idx = t.floor().long()
|
44 |
+
high_idx = t.ceil().long()
|
45 |
+
w = t.frac()
|
46 |
+
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
47 |
+
return log_sigma.exp().to(timestep.device)
|
48 |
+
|
49 |
+
|
50 |
+
def rescale_zero_terminal_snr_sigmas(sigmas):
|
51 |
+
alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
|
52 |
+
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
53 |
+
|
54 |
+
# Store old values.
|
55 |
+
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
56 |
+
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
57 |
+
|
58 |
+
# Shift so the last timestep is zero.
|
59 |
+
alphas_bar_sqrt -= (alphas_bar_sqrt_T)
|
60 |
+
|
61 |
+
# Scale so the first timestep is back to the old value.
|
62 |
+
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
63 |
+
|
64 |
+
# Convert alphas_bar_sqrt to betas
|
65 |
+
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
66 |
+
alphas_bar[-1] = 4.8973451890853435e-08
|
67 |
+
return ((1 - alphas_bar) / alphas_bar) ** 0.5
|
68 |
+
|
69 |
+
class ModelSamplingDiscrete:
|
70 |
+
@classmethod
|
71 |
+
def INPUT_TYPES(s):
|
72 |
+
return {"required": { "model": ("MODEL",),
|
73 |
+
"sampling": (["eps", "v_prediction", "lcm", "tcd"]),
|
74 |
+
"zsnr": ("BOOLEAN", {"default": False}),
|
75 |
+
}}
|
76 |
+
|
77 |
+
RETURN_TYPES = ("MODEL",)
|
78 |
+
FUNCTION = "patch"
|
79 |
+
|
80 |
+
CATEGORY = "advanced/model"
|
81 |
+
|
82 |
+
def patch(self, model, sampling, zsnr):
|
83 |
+
m = model.clone()
|
84 |
+
|
85 |
+
sampling_base = ldm_patched.modules.model_sampling.ModelSamplingDiscrete
|
86 |
+
if sampling == "eps":
|
87 |
+
sampling_type = ldm_patched.modules.model_sampling.EPS
|
88 |
+
elif sampling == "v_prediction":
|
89 |
+
sampling_type = ldm_patched.modules.model_sampling.V_PREDICTION
|
90 |
+
elif sampling == "lcm":
|
91 |
+
sampling_type = LCM
|
92 |
+
sampling_base = ModelSamplingDiscreteDistilled
|
93 |
+
elif sampling == "tcd":
|
94 |
+
sampling_type = ldm_patched.modules.model_sampling.EPS
|
95 |
+
sampling_base = ModelSamplingDiscreteDistilled
|
96 |
+
|
97 |
+
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
98 |
+
pass
|
99 |
+
|
100 |
+
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
101 |
+
if zsnr:
|
102 |
+
model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))
|
103 |
+
|
104 |
+
m.add_object_patch("model_sampling", model_sampling)
|
105 |
+
return (m, )
|
106 |
+
|
107 |
+
class ModelSamplingContinuousEDM:
|
108 |
+
@classmethod
|
109 |
+
def INPUT_TYPES(s):
|
110 |
+
return {"required": { "model": ("MODEL",),
|
111 |
+
"sampling": (["v_prediction", "edm_playground_v2.5", "eps"],),
|
112 |
+
"sigma_max": ("FLOAT", {"default": 120.0, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
|
113 |
+
"sigma_min": ("FLOAT", {"default": 0.002, "min": 0.0, "max": 1000.0, "step":0.001, "round": False}),
|
114 |
+
}}
|
115 |
+
|
116 |
+
RETURN_TYPES = ("MODEL",)
|
117 |
+
FUNCTION = "patch"
|
118 |
+
|
119 |
+
CATEGORY = "advanced/model"
|
120 |
+
|
121 |
+
def patch(self, model, sampling, sigma_max, sigma_min):
|
122 |
+
m = model.clone()
|
123 |
+
|
124 |
+
latent_format = None
|
125 |
+
sigma_data = 1.0
|
126 |
+
if sampling == "eps":
|
127 |
+
sampling_type = ldm_patched.modules.model_sampling.EPS
|
128 |
+
elif sampling == "v_prediction":
|
129 |
+
sampling_type = ldm_patched.modules.model_sampling.V_PREDICTION
|
130 |
+
elif sampling == "edm_playground_v2.5":
|
131 |
+
sampling_type = ldm_patched.modules.model_sampling.EDM
|
132 |
+
sigma_data = 0.5
|
133 |
+
latent_format = ldm_patched.modules.latent_formats.SDXL_Playground_2_5()
|
134 |
+
|
135 |
+
class ModelSamplingAdvanced(ldm_patched.modules.model_sampling.ModelSamplingContinuousEDM, sampling_type):
|
136 |
+
pass
|
137 |
+
|
138 |
+
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
139 |
+
model_sampling.set_parameters(sigma_min, sigma_max, sigma_data)
|
140 |
+
m.add_object_patch("model_sampling", model_sampling)
|
141 |
+
if latent_format is not None:
|
142 |
+
m.add_object_patch("latent_format", latent_format)
|
143 |
+
return (m, )
|
144 |
+
|
145 |
+
class RescaleCFG:
|
146 |
+
@classmethod
|
147 |
+
def INPUT_TYPES(s):
|
148 |
+
return {"required": { "model": ("MODEL",),
|
149 |
+
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
|
150 |
+
}}
|
151 |
+
RETURN_TYPES = ("MODEL",)
|
152 |
+
FUNCTION = "patch"
|
153 |
+
|
154 |
+
CATEGORY = "advanced/model"
|
155 |
+
|
156 |
+
def patch(self, model, multiplier):
|
157 |
+
def rescale_cfg(args):
|
158 |
+
cond = args["cond"]
|
159 |
+
uncond = args["uncond"]
|
160 |
+
cond_scale = args["cond_scale"]
|
161 |
+
sigma = args["sigma"]
|
162 |
+
sigma = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
|
163 |
+
x_orig = args["input"]
|
164 |
+
|
165 |
+
#rescale cfg has to be done on v-pred model output
|
166 |
+
x = x_orig / (sigma * sigma + 1.0)
|
167 |
+
cond = ((x - (x_orig - cond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
|
168 |
+
uncond = ((x - (x_orig - uncond)) * (sigma ** 2 + 1.0) ** 0.5) / (sigma)
|
169 |
+
|
170 |
+
#rescalecfg
|
171 |
+
x_cfg = uncond + cond_scale * (cond - uncond)
|
172 |
+
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
|
173 |
+
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)
|
174 |
+
|
175 |
+
x_rescaled = x_cfg * (ro_pos / ro_cfg)
|
176 |
+
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg
|
177 |
+
|
178 |
+
return x_orig - (x - x_final * sigma / (sigma * sigma + 1.0) ** 0.5)
|
179 |
+
|
180 |
+
m = model.clone()
|
181 |
+
m.set_model_sampler_cfg_function(rescale_cfg)
|
182 |
+
return (m, )
|
183 |
+
|
184 |
+
NODE_CLASS_MAPPINGS = {
|
185 |
+
"ModelSamplingDiscrete": ModelSamplingDiscrete,
|
186 |
+
"ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
|
187 |
+
"RescaleCFG": RescaleCFG,
|
188 |
+
}
|
ldm_patched/contrib/external_model_downscale.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import ldm_patched.modules.utils
|
5 |
+
|
6 |
+
class PatchModelAddDownscale:
|
7 |
+
upscale_methods = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"]
|
8 |
+
@classmethod
|
9 |
+
def INPUT_TYPES(s):
|
10 |
+
return {"required": { "model": ("MODEL",),
|
11 |
+
"block_number": ("INT", {"default": 3, "min": 1, "max": 32, "step": 1}),
|
12 |
+
"downscale_factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 9.0, "step": 0.001}),
|
13 |
+
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
14 |
+
"end_percent": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.001}),
|
15 |
+
"downscale_after_skip": ("BOOLEAN", {"default": True}),
|
16 |
+
"downscale_method": (s.upscale_methods,),
|
17 |
+
"upscale_method": (s.upscale_methods,),
|
18 |
+
}}
|
19 |
+
RETURN_TYPES = ("MODEL",)
|
20 |
+
FUNCTION = "patch"
|
21 |
+
|
22 |
+
CATEGORY = "_for_testing"
|
23 |
+
|
24 |
+
def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method):
|
25 |
+
sigma_start = model.model.model_sampling.percent_to_sigma(start_percent)
|
26 |
+
sigma_end = model.model.model_sampling.percent_to_sigma(end_percent)
|
27 |
+
|
28 |
+
def input_block_patch(h, transformer_options):
|
29 |
+
if transformer_options["block"][1] == block_number:
|
30 |
+
sigma = transformer_options["sigmas"][0].item()
|
31 |
+
if sigma <= sigma_start and sigma >= sigma_end:
|
32 |
+
h = ldm_patched.modules.utils.common_upscale(h, round(h.shape[-1] * (1.0 / downscale_factor)), round(h.shape[-2] * (1.0 / downscale_factor)), downscale_method, "disabled")
|
33 |
+
return h
|
34 |
+
|
35 |
+
def output_block_patch(h, hsp, transformer_options):
|
36 |
+
if h.shape[2] != hsp.shape[2]:
|
37 |
+
h = ldm_patched.modules.utils.common_upscale(h, hsp.shape[-1], hsp.shape[-2], upscale_method, "disabled")
|
38 |
+
return h, hsp
|
39 |
+
|
40 |
+
m = model.clone()
|
41 |
+
if downscale_after_skip:
|
42 |
+
m.set_model_input_block_patch_after_skip(input_block_patch)
|
43 |
+
else:
|
44 |
+
m.set_model_input_block_patch(input_block_patch)
|
45 |
+
m.set_model_output_block_patch(output_block_patch)
|
46 |
+
return (m, )
|
47 |
+
|
48 |
+
NODE_CLASS_MAPPINGS = {
|
49 |
+
"PatchModelAddDownscale": PatchModelAddDownscale,
|
50 |
+
}
|
51 |
+
|
52 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
53 |
+
# Sampling
|
54 |
+
"PatchModelAddDownscale": "PatchModelAddDownscale (Kohya Deep Shrink)",
|
55 |
+
}
|
ldm_patched/contrib/external_model_merging.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import ldm_patched.modules.sd
|
4 |
+
import ldm_patched.modules.utils
|
5 |
+
import ldm_patched.modules.model_base
|
6 |
+
import ldm_patched.modules.model_management
|
7 |
+
|
8 |
+
import ldm_patched.utils.path_utils
|
9 |
+
import json
|
10 |
+
import os
|
11 |
+
|
12 |
+
from ldm_patched.modules.args_parser import args
|
13 |
+
|
14 |
+
class ModelMergeSimple:
|
15 |
+
@classmethod
|
16 |
+
def INPUT_TYPES(s):
|
17 |
+
return {"required": { "model1": ("MODEL",),
|
18 |
+
"model2": ("MODEL",),
|
19 |
+
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
20 |
+
}}
|
21 |
+
RETURN_TYPES = ("MODEL",)
|
22 |
+
FUNCTION = "merge"
|
23 |
+
|
24 |
+
CATEGORY = "advanced/model_merging"
|
25 |
+
|
26 |
+
def merge(self, model1, model2, ratio):
|
27 |
+
m = model1.clone()
|
28 |
+
kp = model2.get_key_patches("diffusion_model.")
|
29 |
+
for k in kp:
|
30 |
+
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
31 |
+
return (m, )
|
32 |
+
|
33 |
+
class ModelSubtract:
|
34 |
+
@classmethod
|
35 |
+
def INPUT_TYPES(s):
|
36 |
+
return {"required": { "model1": ("MODEL",),
|
37 |
+
"model2": ("MODEL",),
|
38 |
+
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
39 |
+
}}
|
40 |
+
RETURN_TYPES = ("MODEL",)
|
41 |
+
FUNCTION = "merge"
|
42 |
+
|
43 |
+
CATEGORY = "advanced/model_merging"
|
44 |
+
|
45 |
+
def merge(self, model1, model2, multiplier):
|
46 |
+
m = model1.clone()
|
47 |
+
kp = model2.get_key_patches("diffusion_model.")
|
48 |
+
for k in kp:
|
49 |
+
m.add_patches({k: kp[k]}, - multiplier, multiplier)
|
50 |
+
return (m, )
|
51 |
+
|
52 |
+
class ModelAdd:
|
53 |
+
@classmethod
|
54 |
+
def INPUT_TYPES(s):
|
55 |
+
return {"required": { "model1": ("MODEL",),
|
56 |
+
"model2": ("MODEL",),
|
57 |
+
}}
|
58 |
+
RETURN_TYPES = ("MODEL",)
|
59 |
+
FUNCTION = "merge"
|
60 |
+
|
61 |
+
CATEGORY = "advanced/model_merging"
|
62 |
+
|
63 |
+
def merge(self, model1, model2):
|
64 |
+
m = model1.clone()
|
65 |
+
kp = model2.get_key_patches("diffusion_model.")
|
66 |
+
for k in kp:
|
67 |
+
m.add_patches({k: kp[k]}, 1.0, 1.0)
|
68 |
+
return (m, )
|
69 |
+
|
70 |
+
|
71 |
+
class CLIPMergeSimple:
|
72 |
+
@classmethod
|
73 |
+
def INPUT_TYPES(s):
|
74 |
+
return {"required": { "clip1": ("CLIP",),
|
75 |
+
"clip2": ("CLIP",),
|
76 |
+
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
77 |
+
}}
|
78 |
+
RETURN_TYPES = ("CLIP",)
|
79 |
+
FUNCTION = "merge"
|
80 |
+
|
81 |
+
CATEGORY = "advanced/model_merging"
|
82 |
+
|
83 |
+
def merge(self, clip1, clip2, ratio):
|
84 |
+
m = clip1.clone()
|
85 |
+
kp = clip2.get_key_patches()
|
86 |
+
for k in kp:
|
87 |
+
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
88 |
+
continue
|
89 |
+
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
90 |
+
return (m, )
|
91 |
+
|
92 |
+
class ModelMergeBlocks:
|
93 |
+
@classmethod
|
94 |
+
def INPUT_TYPES(s):
|
95 |
+
return {"required": { "model1": ("MODEL",),
|
96 |
+
"model2": ("MODEL",),
|
97 |
+
"input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
98 |
+
"middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
99 |
+
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
100 |
+
}}
|
101 |
+
RETURN_TYPES = ("MODEL",)
|
102 |
+
FUNCTION = "merge"
|
103 |
+
|
104 |
+
CATEGORY = "advanced/model_merging"
|
105 |
+
|
106 |
+
def merge(self, model1, model2, **kwargs):
|
107 |
+
m = model1.clone()
|
108 |
+
kp = model2.get_key_patches("diffusion_model.")
|
109 |
+
default_ratio = next(iter(kwargs.values()))
|
110 |
+
|
111 |
+
for k in kp:
|
112 |
+
ratio = default_ratio
|
113 |
+
k_unet = k[len("diffusion_model."):]
|
114 |
+
|
115 |
+
last_arg_size = 0
|
116 |
+
for arg in kwargs:
|
117 |
+
if k_unet.startswith(arg) and last_arg_size < len(arg):
|
118 |
+
ratio = kwargs[arg]
|
119 |
+
last_arg_size = len(arg)
|
120 |
+
|
121 |
+
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
122 |
+
return (m, )
|
123 |
+
|
124 |
+
def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None):
|
125 |
+
full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, output_dir)
|
126 |
+
prompt_info = ""
|
127 |
+
if prompt is not None:
|
128 |
+
prompt_info = json.dumps(prompt)
|
129 |
+
|
130 |
+
metadata = {}
|
131 |
+
|
132 |
+
enable_modelspec = True
|
133 |
+
if isinstance(model.model, ldm_patched.modules.model_base.SDXL):
|
134 |
+
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base"
|
135 |
+
elif isinstance(model.model, ldm_patched.modules.model_base.SDXLRefiner):
|
136 |
+
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner"
|
137 |
+
else:
|
138 |
+
enable_modelspec = False
|
139 |
+
|
140 |
+
if enable_modelspec:
|
141 |
+
metadata["modelspec.sai_model_spec"] = "1.0.0"
|
142 |
+
metadata["modelspec.implementation"] = "sgm"
|
143 |
+
metadata["modelspec.title"] = "{} {}".format(filename, counter)
|
144 |
+
|
145 |
+
#TODO:
|
146 |
+
# "stable-diffusion-v1", "stable-diffusion-v1-inpainting", "stable-diffusion-v2-512",
|
147 |
+
# "stable-diffusion-v2-768-v", "stable-diffusion-v2-unclip-l", "stable-diffusion-v2-unclip-h",
|
148 |
+
# "v2-inpainting"
|
149 |
+
|
150 |
+
if model.model.model_type == ldm_patched.modules.model_base.ModelType.EPS:
|
151 |
+
metadata["modelspec.predict_key"] = "epsilon"
|
152 |
+
elif model.model.model_type == ldm_patched.modules.model_base.ModelType.V_PREDICTION:
|
153 |
+
metadata["modelspec.predict_key"] = "v"
|
154 |
+
|
155 |
+
if not args.disable_server_info:
|
156 |
+
metadata["prompt"] = prompt_info
|
157 |
+
if extra_pnginfo is not None:
|
158 |
+
for x in extra_pnginfo:
|
159 |
+
metadata[x] = json.dumps(extra_pnginfo[x])
|
160 |
+
|
161 |
+
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
162 |
+
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
163 |
+
|
164 |
+
ldm_patched.modules.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata)
|
165 |
+
|
166 |
+
class CheckpointSave:
|
167 |
+
def __init__(self):
|
168 |
+
self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
|
169 |
+
|
170 |
+
@classmethod
|
171 |
+
def INPUT_TYPES(s):
|
172 |
+
return {"required": { "model": ("MODEL",),
|
173 |
+
"clip": ("CLIP",),
|
174 |
+
"vae": ("VAE",),
|
175 |
+
"filename_prefix": ("STRING", {"default": "checkpoints/ldm_patched"}),},
|
176 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
177 |
+
RETURN_TYPES = ()
|
178 |
+
FUNCTION = "save"
|
179 |
+
OUTPUT_NODE = True
|
180 |
+
|
181 |
+
CATEGORY = "advanced/model_merging"
|
182 |
+
|
183 |
+
def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
184 |
+
save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
|
185 |
+
return {}
|
186 |
+
|
187 |
+
class CLIPSave:
|
188 |
+
def __init__(self):
|
189 |
+
self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
|
190 |
+
|
191 |
+
@classmethod
|
192 |
+
def INPUT_TYPES(s):
|
193 |
+
return {"required": { "clip": ("CLIP",),
|
194 |
+
"filename_prefix": ("STRING", {"default": "clip/ldm_patched"}),},
|
195 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
196 |
+
RETURN_TYPES = ()
|
197 |
+
FUNCTION = "save"
|
198 |
+
OUTPUT_NODE = True
|
199 |
+
|
200 |
+
CATEGORY = "advanced/model_merging"
|
201 |
+
|
202 |
+
def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None):
|
203 |
+
prompt_info = ""
|
204 |
+
if prompt is not None:
|
205 |
+
prompt_info = json.dumps(prompt)
|
206 |
+
|
207 |
+
metadata = {}
|
208 |
+
if not args.disable_server_info:
|
209 |
+
metadata["prompt"] = prompt_info
|
210 |
+
if extra_pnginfo is not None:
|
211 |
+
for x in extra_pnginfo:
|
212 |
+
metadata[x] = json.dumps(extra_pnginfo[x])
|
213 |
+
|
214 |
+
ldm_patched.modules.model_management.load_models_gpu([clip.load_model()])
|
215 |
+
clip_sd = clip.get_sd()
|
216 |
+
|
217 |
+
for prefix in ["clip_l.", "clip_g.", ""]:
|
218 |
+
k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys()))
|
219 |
+
current_clip_sd = {}
|
220 |
+
for x in k:
|
221 |
+
current_clip_sd[x] = clip_sd.pop(x)
|
222 |
+
if len(current_clip_sd) == 0:
|
223 |
+
continue
|
224 |
+
|
225 |
+
p = prefix[:-1]
|
226 |
+
replace_prefix = {}
|
227 |
+
filename_prefix_ = filename_prefix
|
228 |
+
if len(p) > 0:
|
229 |
+
filename_prefix_ = "{}_{}".format(filename_prefix_, p)
|
230 |
+
replace_prefix[prefix] = ""
|
231 |
+
replace_prefix["transformer."] = ""
|
232 |
+
|
233 |
+
full_output_folder, filename, counter, subfolder, filename_prefix_ = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix_, self.output_dir)
|
234 |
+
|
235 |
+
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
236 |
+
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
237 |
+
|
238 |
+
current_clip_sd = ldm_patched.modules.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix)
|
239 |
+
|
240 |
+
ldm_patched.modules.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata)
|
241 |
+
return {}
|
242 |
+
|
243 |
+
class VAESave:
|
244 |
+
def __init__(self):
|
245 |
+
self.output_dir = ldm_patched.utils.path_utils.get_output_directory()
|
246 |
+
|
247 |
+
@classmethod
|
248 |
+
def INPUT_TYPES(s):
|
249 |
+
return {"required": { "vae": ("VAE",),
|
250 |
+
"filename_prefix": ("STRING", {"default": "vae/ldm_patched_vae"}),},
|
251 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
252 |
+
RETURN_TYPES = ()
|
253 |
+
FUNCTION = "save"
|
254 |
+
OUTPUT_NODE = True
|
255 |
+
|
256 |
+
CATEGORY = "advanced/model_merging"
|
257 |
+
|
258 |
+
def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
259 |
+
full_output_folder, filename, counter, subfolder, filename_prefix = ldm_patched.utils.path_utils.get_save_image_path(filename_prefix, self.output_dir)
|
260 |
+
prompt_info = ""
|
261 |
+
if prompt is not None:
|
262 |
+
prompt_info = json.dumps(prompt)
|
263 |
+
|
264 |
+
metadata = {}
|
265 |
+
if not args.disable_server_info:
|
266 |
+
metadata["prompt"] = prompt_info
|
267 |
+
if extra_pnginfo is not None:
|
268 |
+
for x in extra_pnginfo:
|
269 |
+
metadata[x] = json.dumps(extra_pnginfo[x])
|
270 |
+
|
271 |
+
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
272 |
+
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
273 |
+
|
274 |
+
ldm_patched.modules.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata)
|
275 |
+
return {}
|
276 |
+
|
277 |
+
NODE_CLASS_MAPPINGS = {
|
278 |
+
"ModelMergeSimple": ModelMergeSimple,
|
279 |
+
"ModelMergeBlocks": ModelMergeBlocks,
|
280 |
+
"ModelMergeSubtract": ModelSubtract,
|
281 |
+
"ModelMergeAdd": ModelAdd,
|
282 |
+
"CheckpointSave": CheckpointSave,
|
283 |
+
"CLIPMergeSimple": CLIPMergeSimple,
|
284 |
+
"CLIPSave": CLIPSave,
|
285 |
+
"VAESave": VAESave,
|
286 |
+
}
|
ldm_patched/contrib/external_perpneg.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import ldm_patched.modules.model_management
|
5 |
+
import ldm_patched.modules.sample
|
6 |
+
import ldm_patched.modules.samplers
|
7 |
+
import ldm_patched.modules.utils
|
8 |
+
|
9 |
+
|
10 |
+
class PerpNeg:
|
11 |
+
@classmethod
|
12 |
+
def INPUT_TYPES(s):
|
13 |
+
return {"required": {"model": ("MODEL", ),
|
14 |
+
"empty_conditioning": ("CONDITIONING", ),
|
15 |
+
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
|
16 |
+
}}
|
17 |
+
RETURN_TYPES = ("MODEL",)
|
18 |
+
FUNCTION = "patch"
|
19 |
+
|
20 |
+
CATEGORY = "_for_testing"
|
21 |
+
|
22 |
+
def patch(self, model, empty_conditioning, neg_scale):
|
23 |
+
m = model.clone()
|
24 |
+
nocond = ldm_patched.modules.sample.convert_cond(empty_conditioning)
|
25 |
+
|
26 |
+
def cfg_function(args):
|
27 |
+
model = args["model"]
|
28 |
+
noise_pred_pos = args["cond_denoised"]
|
29 |
+
noise_pred_neg = args["uncond_denoised"]
|
30 |
+
cond_scale = args["cond_scale"]
|
31 |
+
x = args["input"]
|
32 |
+
sigma = args["sigma"]
|
33 |
+
model_options = args["model_options"]
|
34 |
+
nocond_processed = ldm_patched.modules.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative")
|
35 |
+
|
36 |
+
(noise_pred_nocond, _) = ldm_patched.modules.samplers.calc_cond_uncond_batch(model, nocond_processed, None, x, sigma, model_options)
|
37 |
+
|
38 |
+
pos = noise_pred_pos - noise_pred_nocond
|
39 |
+
neg = noise_pred_neg - noise_pred_nocond
|
40 |
+
perp = ((torch.mul(pos, neg).sum())/(torch.norm(neg)**2)) * neg
|
41 |
+
perp_neg = perp * neg_scale
|
42 |
+
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg)
|
43 |
+
cfg_result = x - cfg_result
|
44 |
+
return cfg_result
|
45 |
+
|
46 |
+
m.set_model_sampler_cfg_function(cfg_function)
|
47 |
+
|
48 |
+
return (m, )
|
49 |
+
|
50 |
+
|
51 |
+
NODE_CLASS_MAPPINGS = {
|
52 |
+
"PerpNeg": PerpNeg,
|
53 |
+
}
|
54 |
+
|
55 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
56 |
+
"PerpNeg": "Perp-Neg",
|
57 |
+
}
|
ldm_patched/contrib/external_photomaker.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import ldm_patched.utils.path_utils
|
6 |
+
import ldm_patched.modules.clip_model
|
7 |
+
import ldm_patched.modules.clip_vision
|
8 |
+
import ldm_patched.modules.ops
|
9 |
+
|
10 |
+
# code for model from: https://github.com/TencentARC/PhotoMaker/blob/main/photomaker/model.py under Apache License Version 2.0
|
11 |
+
VISION_CONFIG_DICT = {
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"image_size": 224,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_channels": 3,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"patch_size": 14,
|
19 |
+
"projection_dim": 768,
|
20 |
+
"hidden_act": "quick_gelu",
|
21 |
+
}
|
22 |
+
|
23 |
+
class MLP(nn.Module):
|
24 |
+
def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True, operations=ldm_patched.modules.ops):
|
25 |
+
super().__init__()
|
26 |
+
if use_residual:
|
27 |
+
assert in_dim == out_dim
|
28 |
+
self.layernorm = operations.LayerNorm(in_dim)
|
29 |
+
self.fc1 = operations.Linear(in_dim, hidden_dim)
|
30 |
+
self.fc2 = operations.Linear(hidden_dim, out_dim)
|
31 |
+
self.use_residual = use_residual
|
32 |
+
self.act_fn = nn.GELU()
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
residual = x
|
36 |
+
x = self.layernorm(x)
|
37 |
+
x = self.fc1(x)
|
38 |
+
x = self.act_fn(x)
|
39 |
+
x = self.fc2(x)
|
40 |
+
if self.use_residual:
|
41 |
+
x = x + residual
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
class FuseModule(nn.Module):
|
46 |
+
def __init__(self, embed_dim, operations):
|
47 |
+
super().__init__()
|
48 |
+
self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False, operations=operations)
|
49 |
+
self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True, operations=operations)
|
50 |
+
self.layer_norm = operations.LayerNorm(embed_dim)
|
51 |
+
|
52 |
+
def fuse_fn(self, prompt_embeds, id_embeds):
|
53 |
+
stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1)
|
54 |
+
stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds
|
55 |
+
stacked_id_embeds = self.mlp2(stacked_id_embeds)
|
56 |
+
stacked_id_embeds = self.layer_norm(stacked_id_embeds)
|
57 |
+
return stacked_id_embeds
|
58 |
+
|
59 |
+
def forward(
|
60 |
+
self,
|
61 |
+
prompt_embeds,
|
62 |
+
id_embeds,
|
63 |
+
class_tokens_mask,
|
64 |
+
) -> torch.Tensor:
|
65 |
+
# id_embeds shape: [b, max_num_inputs, 1, 2048]
|
66 |
+
id_embeds = id_embeds.to(prompt_embeds.dtype)
|
67 |
+
num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case
|
68 |
+
batch_size, max_num_inputs = id_embeds.shape[:2]
|
69 |
+
# seq_length: 77
|
70 |
+
seq_length = prompt_embeds.shape[1]
|
71 |
+
# flat_id_embeds shape: [b*max_num_inputs, 1, 2048]
|
72 |
+
flat_id_embeds = id_embeds.view(
|
73 |
+
-1, id_embeds.shape[-2], id_embeds.shape[-1]
|
74 |
+
)
|
75 |
+
# valid_id_mask [b*max_num_inputs]
|
76 |
+
valid_id_mask = (
|
77 |
+
torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :]
|
78 |
+
< num_inputs[:, None]
|
79 |
+
)
|
80 |
+
valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()]
|
81 |
+
|
82 |
+
prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1])
|
83 |
+
class_tokens_mask = class_tokens_mask.view(-1)
|
84 |
+
valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1])
|
85 |
+
# slice out the image token embeddings
|
86 |
+
image_token_embeds = prompt_embeds[class_tokens_mask]
|
87 |
+
stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds)
|
88 |
+
assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}"
|
89 |
+
prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype))
|
90 |
+
updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1)
|
91 |
+
return updated_prompt_embeds
|
92 |
+
|
93 |
+
class PhotoMakerIDEncoder(ldm_patched.modules.clip_model.CLIPVisionModelProjection):
|
94 |
+
def __init__(self):
|
95 |
+
self.load_device = ldm_patched.modules.model_management.text_encoder_device()
|
96 |
+
offload_device = ldm_patched.modules.model_management.text_encoder_offload_device()
|
97 |
+
dtype = ldm_patched.modules.model_management.text_encoder_dtype(self.load_device)
|
98 |
+
|
99 |
+
super().__init__(VISION_CONFIG_DICT, dtype, offload_device, ldm_patched.modules.ops.manual_cast)
|
100 |
+
self.visual_projection_2 = ldm_patched.modules.ops.manual_cast.Linear(1024, 1280, bias=False)
|
101 |
+
self.fuse_module = FuseModule(2048, ldm_patched.modules.ops.manual_cast)
|
102 |
+
|
103 |
+
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask):
|
104 |
+
b, num_inputs, c, h, w = id_pixel_values.shape
|
105 |
+
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)
|
106 |
+
|
107 |
+
shared_id_embeds = self.vision_model(id_pixel_values)[2]
|
108 |
+
id_embeds = self.visual_projection(shared_id_embeds)
|
109 |
+
id_embeds_2 = self.visual_projection_2(shared_id_embeds)
|
110 |
+
|
111 |
+
id_embeds = id_embeds.view(b, num_inputs, 1, -1)
|
112 |
+
id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1)
|
113 |
+
|
114 |
+
id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1)
|
115 |
+
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
|
116 |
+
|
117 |
+
return updated_prompt_embeds
|
118 |
+
|
119 |
+
|
120 |
+
class PhotoMakerLoader:
|
121 |
+
@classmethod
|
122 |
+
def INPUT_TYPES(s):
|
123 |
+
return {"required": { "photomaker_model_name": (ldm_patched.utils.path_utils.get_filename_list("photomaker"), )}}
|
124 |
+
|
125 |
+
RETURN_TYPES = ("PHOTOMAKER",)
|
126 |
+
FUNCTION = "load_photomaker_model"
|
127 |
+
|
128 |
+
CATEGORY = "_for_testing/photomaker"
|
129 |
+
|
130 |
+
def load_photomaker_model(self, photomaker_model_name):
|
131 |
+
photomaker_model_path = ldm_patched.utils.path_utils.get_full_path("photomaker", photomaker_model_name)
|
132 |
+
photomaker_model = PhotoMakerIDEncoder()
|
133 |
+
data = ldm_patched.modules.utils.load_torch_file(photomaker_model_path, safe_load=True)
|
134 |
+
if "id_encoder" in data:
|
135 |
+
data = data["id_encoder"]
|
136 |
+
photomaker_model.load_state_dict(data)
|
137 |
+
return (photomaker_model,)
|
138 |
+
|
139 |
+
|
140 |
+
class PhotoMakerEncode:
|
141 |
+
@classmethod
|
142 |
+
def INPUT_TYPES(s):
|
143 |
+
return {"required": { "photomaker": ("PHOTOMAKER",),
|
144 |
+
"image": ("IMAGE",),
|
145 |
+
"clip": ("CLIP", ),
|
146 |
+
"text": ("STRING", {"multiline": True, "default": "photograph of photomaker"}),
|
147 |
+
}}
|
148 |
+
|
149 |
+
RETURN_TYPES = ("CONDITIONING",)
|
150 |
+
FUNCTION = "apply_photomaker"
|
151 |
+
|
152 |
+
CATEGORY = "_for_testing/photomaker"
|
153 |
+
|
154 |
+
def apply_photomaker(self, photomaker, image, clip, text):
|
155 |
+
special_token = "photomaker"
|
156 |
+
pixel_values = ldm_patched.modules.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float()
|
157 |
+
try:
|
158 |
+
index = text.split(" ").index(special_token) + 1
|
159 |
+
except ValueError:
|
160 |
+
index = -1
|
161 |
+
tokens = clip.tokenize(text, return_word_ids=True)
|
162 |
+
out_tokens = {}
|
163 |
+
for k in tokens:
|
164 |
+
out_tokens[k] = []
|
165 |
+
for t in tokens[k]:
|
166 |
+
f = list(filter(lambda x: x[2] != index, t))
|
167 |
+
while len(f) < len(t):
|
168 |
+
f.append(t[-1])
|
169 |
+
out_tokens[k].append(f)
|
170 |
+
|
171 |
+
cond, pooled = clip.encode_from_tokens(out_tokens, return_pooled=True)
|
172 |
+
|
173 |
+
if index > 0:
|
174 |
+
token_index = index - 1
|
175 |
+
num_id_images = 1
|
176 |
+
class_tokens_mask = [True if token_index <= i < token_index+num_id_images else False for i in range(77)]
|
177 |
+
out = photomaker(id_pixel_values=pixel_values.unsqueeze(0), prompt_embeds=cond.to(photomaker.load_device),
|
178 |
+
class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0))
|
179 |
+
else:
|
180 |
+
out = cond
|
181 |
+
|
182 |
+
return ([[out, {"pooled_output": pooled}]], )
|
183 |
+
|
184 |
+
|
185 |
+
NODE_CLASS_MAPPINGS = {
|
186 |
+
"PhotoMakerLoader": PhotoMakerLoader,
|
187 |
+
"PhotoMakerEncode": PhotoMakerEncode,
|
188 |
+
}
|
189 |
+
|
ldm_patched/contrib/external_post_processing.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from PIL import Image
|
7 |
+
import math
|
8 |
+
|
9 |
+
import ldm_patched.modules.utils
|
10 |
+
|
11 |
+
|
12 |
+
class Blend:
|
13 |
+
def __init__(self):
|
14 |
+
pass
|
15 |
+
|
16 |
+
@classmethod
|
17 |
+
def INPUT_TYPES(s):
|
18 |
+
return {
|
19 |
+
"required": {
|
20 |
+
"image1": ("IMAGE",),
|
21 |
+
"image2": ("IMAGE",),
|
22 |
+
"blend_factor": ("FLOAT", {
|
23 |
+
"default": 0.5,
|
24 |
+
"min": 0.0,
|
25 |
+
"max": 1.0,
|
26 |
+
"step": 0.01
|
27 |
+
}),
|
28 |
+
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],),
|
29 |
+
},
|
30 |
+
}
|
31 |
+
|
32 |
+
RETURN_TYPES = ("IMAGE",)
|
33 |
+
FUNCTION = "blend_images"
|
34 |
+
|
35 |
+
CATEGORY = "image/postprocessing"
|
36 |
+
|
37 |
+
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
|
38 |
+
image2 = image2.to(image1.device)
|
39 |
+
if image1.shape != image2.shape:
|
40 |
+
image2 = image2.permute(0, 3, 1, 2)
|
41 |
+
image2 = ldm_patched.modules.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
|
42 |
+
image2 = image2.permute(0, 2, 3, 1)
|
43 |
+
|
44 |
+
blended_image = self.blend_mode(image1, image2, blend_mode)
|
45 |
+
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
|
46 |
+
blended_image = torch.clamp(blended_image, 0, 1)
|
47 |
+
return (blended_image,)
|
48 |
+
|
49 |
+
def blend_mode(self, img1, img2, mode):
|
50 |
+
if mode == "normal":
|
51 |
+
return img2
|
52 |
+
elif mode == "multiply":
|
53 |
+
return img1 * img2
|
54 |
+
elif mode == "screen":
|
55 |
+
return 1 - (1 - img1) * (1 - img2)
|
56 |
+
elif mode == "overlay":
|
57 |
+
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
|
58 |
+
elif mode == "soft_light":
|
59 |
+
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
|
60 |
+
elif mode == "difference":
|
61 |
+
return img1 - img2
|
62 |
+
else:
|
63 |
+
raise ValueError(f"Unsupported blend mode: {mode}")
|
64 |
+
|
65 |
+
def g(self, x):
|
66 |
+
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
|
67 |
+
|
68 |
+
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
|
69 |
+
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
|
70 |
+
d = torch.sqrt(x * x + y * y)
|
71 |
+
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
|
72 |
+
return g / g.sum()
|
73 |
+
|
74 |
+
class Blur:
|
75 |
+
def __init__(self):
|
76 |
+
pass
|
77 |
+
|
78 |
+
@classmethod
|
79 |
+
def INPUT_TYPES(s):
|
80 |
+
return {
|
81 |
+
"required": {
|
82 |
+
"image": ("IMAGE",),
|
83 |
+
"blur_radius": ("INT", {
|
84 |
+
"default": 1,
|
85 |
+
"min": 1,
|
86 |
+
"max": 31,
|
87 |
+
"step": 1
|
88 |
+
}),
|
89 |
+
"sigma": ("FLOAT", {
|
90 |
+
"default": 1.0,
|
91 |
+
"min": 0.1,
|
92 |
+
"max": 10.0,
|
93 |
+
"step": 0.1
|
94 |
+
}),
|
95 |
+
},
|
96 |
+
}
|
97 |
+
|
98 |
+
RETURN_TYPES = ("IMAGE",)
|
99 |
+
FUNCTION = "blur"
|
100 |
+
|
101 |
+
CATEGORY = "image/postprocessing"
|
102 |
+
|
103 |
+
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
|
104 |
+
if blur_radius == 0:
|
105 |
+
return (image,)
|
106 |
+
|
107 |
+
batch_size, height, width, channels = image.shape
|
108 |
+
|
109 |
+
kernel_size = blur_radius * 2 + 1
|
110 |
+
kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
|
111 |
+
|
112 |
+
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
113 |
+
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
|
114 |
+
blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
|
115 |
+
blurred = blurred.permute(0, 2, 3, 1)
|
116 |
+
|
117 |
+
return (blurred,)
|
118 |
+
|
119 |
+
class Quantize:
|
120 |
+
def __init__(self):
|
121 |
+
pass
|
122 |
+
|
123 |
+
@classmethod
|
124 |
+
def INPUT_TYPES(s):
|
125 |
+
return {
|
126 |
+
"required": {
|
127 |
+
"image": ("IMAGE",),
|
128 |
+
"colors": ("INT", {
|
129 |
+
"default": 256,
|
130 |
+
"min": 1,
|
131 |
+
"max": 256,
|
132 |
+
"step": 1
|
133 |
+
}),
|
134 |
+
"dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],),
|
135 |
+
},
|
136 |
+
}
|
137 |
+
|
138 |
+
RETURN_TYPES = ("IMAGE",)
|
139 |
+
FUNCTION = "quantize"
|
140 |
+
|
141 |
+
CATEGORY = "image/postprocessing"
|
142 |
+
|
143 |
+
def bayer(im, pal_im, order):
|
144 |
+
def normalized_bayer_matrix(n):
|
145 |
+
if n == 0:
|
146 |
+
return np.zeros((1,1), "float32")
|
147 |
+
else:
|
148 |
+
q = 4 ** n
|
149 |
+
m = q * normalized_bayer_matrix(n - 1)
|
150 |
+
return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q
|
151 |
+
|
152 |
+
num_colors = len(pal_im.getpalette()) // 3
|
153 |
+
spread = 2 * 256 / num_colors
|
154 |
+
bayer_n = int(math.log2(order))
|
155 |
+
bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)
|
156 |
+
|
157 |
+
result = torch.from_numpy(np.array(im).astype(np.float32))
|
158 |
+
tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
|
159 |
+
th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
|
160 |
+
tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
|
161 |
+
result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
|
162 |
+
result = result.to(dtype=torch.uint8)
|
163 |
+
|
164 |
+
im = Image.fromarray(result.cpu().numpy())
|
165 |
+
im = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
|
166 |
+
return im
|
167 |
+
|
168 |
+
def quantize(self, image: torch.Tensor, colors: int, dither: str):
|
169 |
+
batch_size, height, width, _ = image.shape
|
170 |
+
result = torch.zeros_like(image)
|
171 |
+
|
172 |
+
for b in range(batch_size):
|
173 |
+
im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')
|
174 |
+
|
175 |
+
pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
|
176 |
+
|
177 |
+
if dither == "none":
|
178 |
+
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
|
179 |
+
elif dither == "floyd-steinberg":
|
180 |
+
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
|
181 |
+
elif dither.startswith("bayer"):
|
182 |
+
order = int(dither.split('-')[-1])
|
183 |
+
quantized_image = Quantize.bayer(im, pal_im, order)
|
184 |
+
|
185 |
+
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
|
186 |
+
result[b] = quantized_array
|
187 |
+
|
188 |
+
return (result,)
|
189 |
+
|
190 |
+
class Sharpen:
|
191 |
+
def __init__(self):
|
192 |
+
pass
|
193 |
+
|
194 |
+
@classmethod
|
195 |
+
def INPUT_TYPES(s):
|
196 |
+
return {
|
197 |
+
"required": {
|
198 |
+
"image": ("IMAGE",),
|
199 |
+
"sharpen_radius": ("INT", {
|
200 |
+
"default": 1,
|
201 |
+
"min": 1,
|
202 |
+
"max": 31,
|
203 |
+
"step": 1
|
204 |
+
}),
|
205 |
+
"sigma": ("FLOAT", {
|
206 |
+
"default": 1.0,
|
207 |
+
"min": 0.1,
|
208 |
+
"max": 10.0,
|
209 |
+
"step": 0.1
|
210 |
+
}),
|
211 |
+
"alpha": ("FLOAT", {
|
212 |
+
"default": 1.0,
|
213 |
+
"min": 0.0,
|
214 |
+
"max": 5.0,
|
215 |
+
"step": 0.1
|
216 |
+
}),
|
217 |
+
},
|
218 |
+
}
|
219 |
+
|
220 |
+
RETURN_TYPES = ("IMAGE",)
|
221 |
+
FUNCTION = "sharpen"
|
222 |
+
|
223 |
+
CATEGORY = "image/postprocessing"
|
224 |
+
|
225 |
+
def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
|
226 |
+
if sharpen_radius == 0:
|
227 |
+
return (image,)
|
228 |
+
|
229 |
+
batch_size, height, width, channels = image.shape
|
230 |
+
|
231 |
+
kernel_size = sharpen_radius * 2 + 1
|
232 |
+
kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10)
|
233 |
+
center = kernel_size // 2
|
234 |
+
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
|
235 |
+
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
|
236 |
+
|
237 |
+
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
238 |
+
tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
|
239 |
+
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
|
240 |
+
sharpened = sharpened.permute(0, 2, 3, 1)
|
241 |
+
|
242 |
+
result = torch.clamp(sharpened, 0, 1)
|
243 |
+
|
244 |
+
return (result,)
|
245 |
+
|
246 |
+
class ImageScaleToTotalPixels:
|
247 |
+
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
248 |
+
crop_methods = ["disabled", "center"]
|
249 |
+
|
250 |
+
@classmethod
|
251 |
+
def INPUT_TYPES(s):
|
252 |
+
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
253 |
+
"megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
|
254 |
+
}}
|
255 |
+
RETURN_TYPES = ("IMAGE",)
|
256 |
+
FUNCTION = "upscale"
|
257 |
+
|
258 |
+
CATEGORY = "image/upscaling"
|
259 |
+
|
260 |
+
def upscale(self, image, upscale_method, megapixels):
|
261 |
+
samples = image.movedim(-1,1)
|
262 |
+
total = int(megapixels * 1024 * 1024)
|
263 |
+
|
264 |
+
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
265 |
+
width = round(samples.shape[3] * scale_by)
|
266 |
+
height = round(samples.shape[2] * scale_by)
|
267 |
+
|
268 |
+
s = ldm_patched.modules.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
269 |
+
s = s.movedim(1,-1)
|
270 |
+
return (s,)
|
271 |
+
|
272 |
+
NODE_CLASS_MAPPINGS = {
|
273 |
+
"ImageBlend": Blend,
|
274 |
+
"ImageBlur": Blur,
|
275 |
+
"ImageQuantize": Quantize,
|
276 |
+
"ImageSharpen": Sharpen,
|
277 |
+
"ImageScaleToTotalPixels": ImageScaleToTotalPixels,
|
278 |
+
}
|
ldm_patched/contrib/external_rebatch.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
class LatentRebatch:
|
6 |
+
@classmethod
|
7 |
+
def INPUT_TYPES(s):
|
8 |
+
return {"required": { "latents": ("LATENT",),
|
9 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
10 |
+
}}
|
11 |
+
RETURN_TYPES = ("LATENT",)
|
12 |
+
INPUT_IS_LIST = True
|
13 |
+
OUTPUT_IS_LIST = (True, )
|
14 |
+
|
15 |
+
FUNCTION = "rebatch"
|
16 |
+
|
17 |
+
CATEGORY = "latent/batch"
|
18 |
+
|
19 |
+
@staticmethod
|
20 |
+
def get_batch(latents, list_ind, offset):
|
21 |
+
'''prepare a batch out of the list of latents'''
|
22 |
+
samples = latents[list_ind]['samples']
|
23 |
+
shape = samples.shape
|
24 |
+
mask = latents[list_ind]['noise_mask'] if 'noise_mask' in latents[list_ind] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu')
|
25 |
+
if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]:
|
26 |
+
torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear")
|
27 |
+
if mask.shape[0] < samples.shape[0]:
|
28 |
+
mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
|
29 |
+
if 'batch_index' in latents[list_ind]:
|
30 |
+
batch_inds = latents[list_ind]['batch_index']
|
31 |
+
else:
|
32 |
+
batch_inds = [x+offset for x in range(shape[0])]
|
33 |
+
return samples, mask, batch_inds
|
34 |
+
|
35 |
+
@staticmethod
|
36 |
+
def get_slices(indexable, num, batch_size):
|
37 |
+
'''divides an indexable object into num slices of length batch_size, and a remainder'''
|
38 |
+
slices = []
|
39 |
+
for i in range(num):
|
40 |
+
slices.append(indexable[i*batch_size:(i+1)*batch_size])
|
41 |
+
if num * batch_size < len(indexable):
|
42 |
+
return slices, indexable[num * batch_size:]
|
43 |
+
else:
|
44 |
+
return slices, None
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def slice_batch(batch, num, batch_size):
|
48 |
+
result = [LatentRebatch.get_slices(x, num, batch_size) for x in batch]
|
49 |
+
return list(zip(*result))
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def cat_batch(batch1, batch2):
|
53 |
+
if batch1[0] is None:
|
54 |
+
return batch2
|
55 |
+
result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)]
|
56 |
+
return result
|
57 |
+
|
58 |
+
def rebatch(self, latents, batch_size):
|
59 |
+
batch_size = batch_size[0]
|
60 |
+
|
61 |
+
output_list = []
|
62 |
+
current_batch = (None, None, None)
|
63 |
+
processed = 0
|
64 |
+
|
65 |
+
for i in range(len(latents)):
|
66 |
+
# fetch new entry of list
|
67 |
+
#samples, masks, indices = self.get_batch(latents, i)
|
68 |
+
next_batch = self.get_batch(latents, i, processed)
|
69 |
+
processed += len(next_batch[2])
|
70 |
+
# set to current if current is None
|
71 |
+
if current_batch[0] is None:
|
72 |
+
current_batch = next_batch
|
73 |
+
# add previous to list if dimensions do not match
|
74 |
+
elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]:
|
75 |
+
sliced, _ = self.slice_batch(current_batch, 1, batch_size)
|
76 |
+
output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
|
77 |
+
current_batch = next_batch
|
78 |
+
# cat if everything checks out
|
79 |
+
else:
|
80 |
+
current_batch = self.cat_batch(current_batch, next_batch)
|
81 |
+
|
82 |
+
# add to list if dimensions gone above target batch size
|
83 |
+
if current_batch[0].shape[0] > batch_size:
|
84 |
+
num = current_batch[0].shape[0] // batch_size
|
85 |
+
sliced, remainder = self.slice_batch(current_batch, num, batch_size)
|
86 |
+
|
87 |
+
for i in range(num):
|
88 |
+
output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]})
|
89 |
+
|
90 |
+
current_batch = remainder
|
91 |
+
|
92 |
+
#add remainder
|
93 |
+
if current_batch[0] is not None:
|
94 |
+
sliced, _ = self.slice_batch(current_batch, 1, batch_size)
|
95 |
+
output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
|
96 |
+
|
97 |
+
#get rid of empty masks
|
98 |
+
for s in output_list:
|
99 |
+
if s['noise_mask'].mean() == 1.0:
|
100 |
+
del s['noise_mask']
|
101 |
+
|
102 |
+
return (output_list,)
|
103 |
+
|
104 |
+
class ImageRebatch:
|
105 |
+
@classmethod
|
106 |
+
def INPUT_TYPES(s):
|
107 |
+
return {"required": { "images": ("IMAGE",),
|
108 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
109 |
+
}}
|
110 |
+
RETURN_TYPES = ("IMAGE",)
|
111 |
+
INPUT_IS_LIST = True
|
112 |
+
OUTPUT_IS_LIST = (True, )
|
113 |
+
|
114 |
+
FUNCTION = "rebatch"
|
115 |
+
|
116 |
+
CATEGORY = "image/batch"
|
117 |
+
|
118 |
+
def rebatch(self, images, batch_size):
|
119 |
+
batch_size = batch_size[0]
|
120 |
+
|
121 |
+
output_list = []
|
122 |
+
all_images = []
|
123 |
+
for img in images:
|
124 |
+
for i in range(img.shape[0]):
|
125 |
+
all_images.append(img[i:i+1])
|
126 |
+
|
127 |
+
for i in range(0, len(all_images), batch_size):
|
128 |
+
output_list.append(torch.cat(all_images[i:i+batch_size], dim=0))
|
129 |
+
|
130 |
+
return (output_list,)
|
131 |
+
|
132 |
+
NODE_CLASS_MAPPINGS = {
|
133 |
+
"RebatchLatents": LatentRebatch,
|
134 |
+
"RebatchImages": ImageRebatch,
|
135 |
+
}
|
136 |
+
|
137 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
138 |
+
"RebatchLatents": "Rebatch Latents",
|
139 |
+
"RebatchImages": "Rebatch Images",
|
140 |
+
}
|
ldm_patched/contrib/external_sag.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import einsum
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import math
|
7 |
+
|
8 |
+
from einops import rearrange, repeat
|
9 |
+
import os
|
10 |
+
from ldm_patched.ldm.modules.attention import optimized_attention, _ATTN_PRECISION
|
11 |
+
import ldm_patched.modules.samplers
|
12 |
+
|
13 |
+
# from ldm_patched.modules/ldm/modules/attention.py
|
14 |
+
# but modified to return attention scores as well as output
|
15 |
+
def attention_basic_with_sim(q, k, v, heads, mask=None):
|
16 |
+
b, _, dim_head = q.shape
|
17 |
+
dim_head //= heads
|
18 |
+
scale = dim_head ** -0.5
|
19 |
+
|
20 |
+
h = heads
|
21 |
+
q, k, v = map(
|
22 |
+
lambda t: t.unsqueeze(3)
|
23 |
+
.reshape(b, -1, heads, dim_head)
|
24 |
+
.permute(0, 2, 1, 3)
|
25 |
+
.reshape(b * heads, -1, dim_head)
|
26 |
+
.contiguous(),
|
27 |
+
(q, k, v),
|
28 |
+
)
|
29 |
+
|
30 |
+
# force cast to fp32 to avoid overflowing
|
31 |
+
if _ATTN_PRECISION =="fp32":
|
32 |
+
sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
|
33 |
+
else:
|
34 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * scale
|
35 |
+
|
36 |
+
del q, k
|
37 |
+
|
38 |
+
if mask is not None:
|
39 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
40 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
41 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
42 |
+
sim.masked_fill_(~mask, max_neg_value)
|
43 |
+
|
44 |
+
# attention, what we cannot get enough of
|
45 |
+
sim = sim.softmax(dim=-1)
|
46 |
+
|
47 |
+
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
|
48 |
+
out = (
|
49 |
+
out.unsqueeze(0)
|
50 |
+
.reshape(b, heads, -1, dim_head)
|
51 |
+
.permute(0, 2, 1, 3)
|
52 |
+
.reshape(b, -1, heads * dim_head)
|
53 |
+
)
|
54 |
+
return (out, sim)
|
55 |
+
|
56 |
+
def create_blur_map(x0, attn, sigma=3.0, threshold=1.0):
|
57 |
+
# reshape and GAP the attention map
|
58 |
+
_, hw1, hw2 = attn.shape
|
59 |
+
b, _, lh, lw = x0.shape
|
60 |
+
attn = attn.reshape(b, -1, hw1, hw2)
|
61 |
+
# Global Average Pool
|
62 |
+
mask = attn.mean(1, keepdim=False).sum(1, keepdim=False) > threshold
|
63 |
+
ratio = 2**(math.ceil(math.sqrt(lh * lw / hw1)) - 1).bit_length()
|
64 |
+
mid_shape = [math.ceil(lh / ratio), math.ceil(lw / ratio)]
|
65 |
+
|
66 |
+
# Reshape
|
67 |
+
mask = (
|
68 |
+
mask.reshape(b, *mid_shape)
|
69 |
+
.unsqueeze(1)
|
70 |
+
.type(attn.dtype)
|
71 |
+
)
|
72 |
+
# Upsample
|
73 |
+
mask = F.interpolate(mask, (lh, lw))
|
74 |
+
|
75 |
+
blurred = gaussian_blur_2d(x0, kernel_size=9, sigma=sigma)
|
76 |
+
blurred = blurred * mask + x0 * (1 - mask)
|
77 |
+
return blurred
|
78 |
+
|
79 |
+
def gaussian_blur_2d(img, kernel_size, sigma):
|
80 |
+
ksize_half = (kernel_size - 1) * 0.5
|
81 |
+
|
82 |
+
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
|
83 |
+
|
84 |
+
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
|
85 |
+
|
86 |
+
x_kernel = pdf / pdf.sum()
|
87 |
+
x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)
|
88 |
+
|
89 |
+
kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
|
90 |
+
kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])
|
91 |
+
|
92 |
+
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]
|
93 |
+
|
94 |
+
img = F.pad(img, padding, mode="reflect")
|
95 |
+
img = F.conv2d(img, kernel2d, groups=img.shape[-3])
|
96 |
+
return img
|
97 |
+
|
98 |
+
class SelfAttentionGuidance:
|
99 |
+
@classmethod
|
100 |
+
def INPUT_TYPES(s):
|
101 |
+
return {"required": { "model": ("MODEL",),
|
102 |
+
"scale": ("FLOAT", {"default": 0.5, "min": -2.0, "max": 5.0, "step": 0.1}),
|
103 |
+
"blur_sigma": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 10.0, "step": 0.1}),
|
104 |
+
}}
|
105 |
+
RETURN_TYPES = ("MODEL",)
|
106 |
+
FUNCTION = "patch"
|
107 |
+
|
108 |
+
CATEGORY = "_for_testing"
|
109 |
+
|
110 |
+
def patch(self, model, scale, blur_sigma):
|
111 |
+
m = model.clone()
|
112 |
+
|
113 |
+
attn_scores = None
|
114 |
+
|
115 |
+
# TODO: make this work properly with chunked batches
|
116 |
+
# currently, we can only save the attn from one UNet call
|
117 |
+
def attn_and_record(q, k, v, extra_options):
|
118 |
+
nonlocal attn_scores
|
119 |
+
# if uncond, save the attention scores
|
120 |
+
heads = extra_options["n_heads"]
|
121 |
+
cond_or_uncond = extra_options["cond_or_uncond"]
|
122 |
+
b = q.shape[0] // len(cond_or_uncond)
|
123 |
+
if 1 in cond_or_uncond:
|
124 |
+
uncond_index = cond_or_uncond.index(1)
|
125 |
+
# do the entire attention operation, but save the attention scores to attn_scores
|
126 |
+
(out, sim) = attention_basic_with_sim(q, k, v, heads=heads)
|
127 |
+
# when using a higher batch size, I BELIEVE the result batch dimension is [uc1, ... ucn, c1, ... cn]
|
128 |
+
n_slices = heads * b
|
129 |
+
attn_scores = sim[n_slices * uncond_index:n_slices * (uncond_index+1)]
|
130 |
+
return out
|
131 |
+
else:
|
132 |
+
return optimized_attention(q, k, v, heads=heads)
|
133 |
+
|
134 |
+
def post_cfg_function(args):
|
135 |
+
nonlocal attn_scores
|
136 |
+
uncond_attn = attn_scores
|
137 |
+
|
138 |
+
sag_scale = scale
|
139 |
+
sag_sigma = blur_sigma
|
140 |
+
sag_threshold = 1.0
|
141 |
+
model = args["model"]
|
142 |
+
uncond_pred = args["uncond_denoised"]
|
143 |
+
uncond = args["uncond"]
|
144 |
+
cfg_result = args["denoised"]
|
145 |
+
sigma = args["sigma"]
|
146 |
+
model_options = args["model_options"]
|
147 |
+
x = args["input"]
|
148 |
+
if min(cfg_result.shape[2:]) <= 4: #skip when too small to add padding
|
149 |
+
return cfg_result
|
150 |
+
|
151 |
+
# create the adversarially blurred image
|
152 |
+
degraded = create_blur_map(uncond_pred, uncond_attn, sag_sigma, sag_threshold)
|
153 |
+
degraded_noised = degraded + x - uncond_pred
|
154 |
+
# call into the UNet
|
155 |
+
(sag, _) = ldm_patched.modules.samplers.calc_cond_uncond_batch(model, uncond, None, degraded_noised, sigma, model_options)
|
156 |
+
return cfg_result + (degraded - sag) * sag_scale
|
157 |
+
|
158 |
+
m.set_model_sampler_post_cfg_function(post_cfg_function, disable_cfg1_optimization=True)
|
159 |
+
|
160 |
+
# from diffusers:
|
161 |
+
# unet.mid_block.attentions[0].transformer_blocks[0].attn1.patch
|
162 |
+
m.set_model_attn1_replace(attn_and_record, "middle", 0, 0)
|
163 |
+
|
164 |
+
return (m, )
|
165 |
+
|
166 |
+
NODE_CLASS_MAPPINGS = {
|
167 |
+
"SelfAttentionGuidance": SelfAttentionGuidance,
|
168 |
+
}
|
169 |
+
|
170 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
171 |
+
"SelfAttentionGuidance": "Self-Attention Guidance",
|
172 |
+
}
|
ldm_patched/contrib/external_sdupscale.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import ldm_patched.contrib.external
|
5 |
+
import ldm_patched.modules.utils
|
6 |
+
|
7 |
+
class SD_4XUpscale_Conditioning:
|
8 |
+
@classmethod
|
9 |
+
def INPUT_TYPES(s):
|
10 |
+
return {"required": { "images": ("IMAGE",),
|
11 |
+
"positive": ("CONDITIONING",),
|
12 |
+
"negative": ("CONDITIONING",),
|
13 |
+
"scale_ratio": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
14 |
+
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
15 |
+
}}
|
16 |
+
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
17 |
+
RETURN_NAMES = ("positive", "negative", "latent")
|
18 |
+
|
19 |
+
FUNCTION = "encode"
|
20 |
+
|
21 |
+
CATEGORY = "conditioning/upscale_diffusion"
|
22 |
+
|
23 |
+
def encode(self, images, positive, negative, scale_ratio, noise_augmentation):
|
24 |
+
width = max(1, round(images.shape[-2] * scale_ratio))
|
25 |
+
height = max(1, round(images.shape[-3] * scale_ratio))
|
26 |
+
|
27 |
+
pixels = ldm_patched.modules.utils.common_upscale((images.movedim(-1,1) * 2.0) - 1.0, width // 4, height // 4, "bilinear", "center")
|
28 |
+
|
29 |
+
out_cp = []
|
30 |
+
out_cn = []
|
31 |
+
|
32 |
+
for t in positive:
|
33 |
+
n = [t[0], t[1].copy()]
|
34 |
+
n[1]['concat_image'] = pixels
|
35 |
+
n[1]['noise_augmentation'] = noise_augmentation
|
36 |
+
out_cp.append(n)
|
37 |
+
|
38 |
+
for t in negative:
|
39 |
+
n = [t[0], t[1].copy()]
|
40 |
+
n[1]['concat_image'] = pixels
|
41 |
+
n[1]['noise_augmentation'] = noise_augmentation
|
42 |
+
out_cn.append(n)
|
43 |
+
|
44 |
+
latent = torch.zeros([images.shape[0], 4, height // 4, width // 4])
|
45 |
+
return (out_cp, out_cn, {"samples":latent})
|
46 |
+
|
47 |
+
NODE_CLASS_MAPPINGS = {
|
48 |
+
"SD_4XUpscale_Conditioning": SD_4XUpscale_Conditioning,
|
49 |
+
}
|
ldm_patched/contrib/external_stable3d.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import ldm_patched.contrib.external
|
5 |
+
import ldm_patched.modules.utils
|
6 |
+
|
7 |
+
def camera_embeddings(elevation, azimuth):
|
8 |
+
elevation = torch.as_tensor([elevation])
|
9 |
+
azimuth = torch.as_tensor([azimuth])
|
10 |
+
embeddings = torch.stack(
|
11 |
+
[
|
12 |
+
torch.deg2rad(
|
13 |
+
(90 - elevation) - (90)
|
14 |
+
), # Zero123 polar is 90-elevation
|
15 |
+
torch.sin(torch.deg2rad(azimuth)),
|
16 |
+
torch.cos(torch.deg2rad(azimuth)),
|
17 |
+
torch.deg2rad(
|
18 |
+
90 - torch.full_like(elevation, 0)
|
19 |
+
),
|
20 |
+
], dim=-1).unsqueeze(1)
|
21 |
+
|
22 |
+
return embeddings
|
23 |
+
|
24 |
+
|
25 |
+
class StableZero123_Conditioning:
|
26 |
+
@classmethod
|
27 |
+
def INPUT_TYPES(s):
|
28 |
+
return {"required": { "clip_vision": ("CLIP_VISION",),
|
29 |
+
"init_image": ("IMAGE",),
|
30 |
+
"vae": ("VAE",),
|
31 |
+
"width": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
|
32 |
+
"height": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
|
33 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
34 |
+
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
35 |
+
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
36 |
+
}}
|
37 |
+
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
38 |
+
RETURN_NAMES = ("positive", "negative", "latent")
|
39 |
+
|
40 |
+
FUNCTION = "encode"
|
41 |
+
|
42 |
+
CATEGORY = "conditioning/3d_models"
|
43 |
+
|
44 |
+
def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth):
|
45 |
+
output = clip_vision.encode_image(init_image)
|
46 |
+
pooled = output.image_embeds.unsqueeze(0)
|
47 |
+
pixels = ldm_patched.modules.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
48 |
+
encode_pixels = pixels[:,:,:,:3]
|
49 |
+
t = vae.encode(encode_pixels)
|
50 |
+
cam_embeds = camera_embeddings(elevation, azimuth)
|
51 |
+
cond = torch.cat([pooled, cam_embeds.to(pooled.device).repeat((pooled.shape[0], 1, 1))], dim=-1)
|
52 |
+
|
53 |
+
positive = [[cond, {"concat_latent_image": t}]]
|
54 |
+
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]]
|
55 |
+
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
56 |
+
return (positive, negative, {"samples":latent})
|
57 |
+
|
58 |
+
class StableZero123_Conditioning_Batched:
|
59 |
+
@classmethod
|
60 |
+
def INPUT_TYPES(s):
|
61 |
+
return {"required": { "clip_vision": ("CLIP_VISION",),
|
62 |
+
"init_image": ("IMAGE",),
|
63 |
+
"vae": ("VAE",),
|
64 |
+
"width": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
|
65 |
+
"height": ("INT", {"default": 256, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
|
66 |
+
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
67 |
+
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
68 |
+
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
69 |
+
"elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
70 |
+
"azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
71 |
+
}}
|
72 |
+
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
73 |
+
RETURN_NAMES = ("positive", "negative", "latent")
|
74 |
+
|
75 |
+
FUNCTION = "encode"
|
76 |
+
|
77 |
+
CATEGORY = "conditioning/3d_models"
|
78 |
+
|
79 |
+
def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth, elevation_batch_increment, azimuth_batch_increment):
|
80 |
+
output = clip_vision.encode_image(init_image)
|
81 |
+
pooled = output.image_embeds.unsqueeze(0)
|
82 |
+
pixels = ldm_patched.modules.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
83 |
+
encode_pixels = pixels[:,:,:,:3]
|
84 |
+
t = vae.encode(encode_pixels)
|
85 |
+
|
86 |
+
cam_embeds = []
|
87 |
+
for i in range(batch_size):
|
88 |
+
cam_embeds.append(camera_embeddings(elevation, azimuth))
|
89 |
+
elevation += elevation_batch_increment
|
90 |
+
azimuth += azimuth_batch_increment
|
91 |
+
|
92 |
+
cam_embeds = torch.cat(cam_embeds, dim=0)
|
93 |
+
cond = torch.cat([ldm_patched.modules.utils.repeat_to_batch_size(pooled, batch_size), cam_embeds], dim=-1)
|
94 |
+
|
95 |
+
positive = [[cond, {"concat_latent_image": t}]]
|
96 |
+
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]]
|
97 |
+
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
98 |
+
return (positive, negative, {"samples":latent, "batch_index": [0] * batch_size})
|
99 |
+
|
100 |
+
|
101 |
+
NODE_CLASS_MAPPINGS = {
|
102 |
+
"StableZero123_Conditioning": StableZero123_Conditioning,
|
103 |
+
"StableZero123_Conditioning_Batched": StableZero123_Conditioning_Batched,
|
104 |
+
}
|
ldm_patched/contrib/external_tomesd.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
#Taken from: https://github.com/dbolya/tomesd
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from typing import Tuple, Callable
|
7 |
+
import math
|
8 |
+
|
9 |
+
def do_nothing(x: torch.Tensor, mode:str=None):
|
10 |
+
return x
|
11 |
+
|
12 |
+
|
13 |
+
def mps_gather_workaround(input, dim, index):
|
14 |
+
if input.shape[-1] == 1:
|
15 |
+
return torch.gather(
|
16 |
+
input.unsqueeze(-1),
|
17 |
+
dim - 1 if dim < 0 else dim,
|
18 |
+
index.unsqueeze(-1)
|
19 |
+
).squeeze(-1)
|
20 |
+
else:
|
21 |
+
return torch.gather(input, dim, index)
|
22 |
+
|
23 |
+
|
24 |
+
def bipartite_soft_matching_random2d(metric: torch.Tensor,
|
25 |
+
w: int, h: int, sx: int, sy: int, r: int,
|
26 |
+
no_rand: bool = False) -> Tuple[Callable, Callable]:
|
27 |
+
"""
|
28 |
+
Partitions the tokens into src and dst and merges r tokens from src to dst.
|
29 |
+
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
|
30 |
+
Args:
|
31 |
+
- metric [B, N, C]: metric to use for similarity
|
32 |
+
- w: image width in tokens
|
33 |
+
- h: image height in tokens
|
34 |
+
- sx: stride in the x dimension for dst, must divide w
|
35 |
+
- sy: stride in the y dimension for dst, must divide h
|
36 |
+
- r: number of tokens to remove (by merging)
|
37 |
+
- no_rand: if true, disable randomness (use top left corner only)
|
38 |
+
"""
|
39 |
+
B, N, _ = metric.shape
|
40 |
+
|
41 |
+
if r <= 0 or w == 1 or h == 1:
|
42 |
+
return do_nothing, do_nothing
|
43 |
+
|
44 |
+
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
|
48 |
+
hsy, wsx = h // sy, w // sx
|
49 |
+
|
50 |
+
# For each sy by sx kernel, randomly assign one token to be dst and the rest src
|
51 |
+
if no_rand:
|
52 |
+
rand_idx = torch.zeros(hsy, wsx, 1, device=metric.device, dtype=torch.int64)
|
53 |
+
else:
|
54 |
+
rand_idx = torch.randint(sy*sx, size=(hsy, wsx, 1), device=metric.device)
|
55 |
+
|
56 |
+
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
|
57 |
+
idx_buffer_view = torch.zeros(hsy, wsx, sy*sx, device=metric.device, dtype=torch.int64)
|
58 |
+
idx_buffer_view.scatter_(dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype))
|
59 |
+
idx_buffer_view = idx_buffer_view.view(hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx)
|
60 |
+
|
61 |
+
# Image is not divisible by sx or sy so we need to move it into a new buffer
|
62 |
+
if (hsy * sy) < h or (wsx * sx) < w:
|
63 |
+
idx_buffer = torch.zeros(h, w, device=metric.device, dtype=torch.int64)
|
64 |
+
idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view
|
65 |
+
else:
|
66 |
+
idx_buffer = idx_buffer_view
|
67 |
+
|
68 |
+
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
|
69 |
+
rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1)
|
70 |
+
|
71 |
+
# We're finished with these
|
72 |
+
del idx_buffer, idx_buffer_view
|
73 |
+
|
74 |
+
# rand_idx is currently dst|src, so split them
|
75 |
+
num_dst = hsy * wsx
|
76 |
+
a_idx = rand_idx[:, num_dst:, :] # src
|
77 |
+
b_idx = rand_idx[:, :num_dst, :] # dst
|
78 |
+
|
79 |
+
def split(x):
|
80 |
+
C = x.shape[-1]
|
81 |
+
src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C))
|
82 |
+
dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C))
|
83 |
+
return src, dst
|
84 |
+
|
85 |
+
# Cosine similarity between A and B
|
86 |
+
metric = metric / metric.norm(dim=-1, keepdim=True)
|
87 |
+
a, b = split(metric)
|
88 |
+
scores = a @ b.transpose(-1, -2)
|
89 |
+
|
90 |
+
# Can't reduce more than the # tokens in src
|
91 |
+
r = min(a.shape[1], r)
|
92 |
+
|
93 |
+
# Find the most similar greedily
|
94 |
+
node_max, node_idx = scores.max(dim=-1)
|
95 |
+
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
|
96 |
+
|
97 |
+
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
|
98 |
+
src_idx = edge_idx[..., :r, :] # Merged Tokens
|
99 |
+
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
|
100 |
+
|
101 |
+
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
|
102 |
+
src, dst = split(x)
|
103 |
+
n, t1, c = src.shape
|
104 |
+
|
105 |
+
unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c))
|
106 |
+
src = gather(src, dim=-2, index=src_idx.expand(n, r, c))
|
107 |
+
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)
|
108 |
+
|
109 |
+
return torch.cat([unm, dst], dim=1)
|
110 |
+
|
111 |
+
def unmerge(x: torch.Tensor) -> torch.Tensor:
|
112 |
+
unm_len = unm_idx.shape[1]
|
113 |
+
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
|
114 |
+
_, _, c = unm.shape
|
115 |
+
|
116 |
+
src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c))
|
117 |
+
|
118 |
+
# Combine back to the original shape
|
119 |
+
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
|
120 |
+
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
|
121 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm)
|
122 |
+
out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src)
|
123 |
+
|
124 |
+
return out
|
125 |
+
|
126 |
+
return merge, unmerge
|
127 |
+
|
128 |
+
|
129 |
+
def get_functions(x, ratio, original_shape):
|
130 |
+
b, c, original_h, original_w = original_shape
|
131 |
+
original_tokens = original_h * original_w
|
132 |
+
downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))
|
133 |
+
stride_x = 2
|
134 |
+
stride_y = 2
|
135 |
+
max_downsample = 1
|
136 |
+
|
137 |
+
if downsample <= max_downsample:
|
138 |
+
w = int(math.ceil(original_w / downsample))
|
139 |
+
h = int(math.ceil(original_h / downsample))
|
140 |
+
r = int(x.shape[1] * ratio)
|
141 |
+
no_rand = False
|
142 |
+
m, u = bipartite_soft_matching_random2d(x, w, h, stride_x, stride_y, r, no_rand)
|
143 |
+
return m, u
|
144 |
+
|
145 |
+
nothing = lambda y: y
|
146 |
+
return nothing, nothing
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
class TomePatchModel:
|
151 |
+
@classmethod
|
152 |
+
def INPUT_TYPES(s):
|
153 |
+
return {"required": { "model": ("MODEL",),
|
154 |
+
"ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
|
155 |
+
}}
|
156 |
+
RETURN_TYPES = ("MODEL",)
|
157 |
+
FUNCTION = "patch"
|
158 |
+
|
159 |
+
CATEGORY = "_for_testing"
|
160 |
+
|
161 |
+
def patch(self, model, ratio):
|
162 |
+
self.u = None
|
163 |
+
def tomesd_m(q, k, v, extra_options):
|
164 |
+
#NOTE: In the reference code get_functions takes x (input of the transformer block) as the argument instead of q
|
165 |
+
#however from my basic testing it seems that using q instead gives better results
|
166 |
+
m, self.u = get_functions(q, ratio, extra_options["original_shape"])
|
167 |
+
return m(q), k, v
|
168 |
+
def tomesd_u(n, extra_options):
|
169 |
+
return self.u(n)
|
170 |
+
|
171 |
+
m = model.clone()
|
172 |
+
m.set_model_attn1_patch(tomesd_m)
|
173 |
+
m.set_model_attn1_output_patch(tomesd_u)
|
174 |
+
return (m, )
|
175 |
+
|
176 |
+
|
177 |
+
NODE_CLASS_MAPPINGS = {
|
178 |
+
"TomePatchModel": TomePatchModel,
|
179 |
+
}
|
ldm_patched/contrib/external_upscale_model.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
from ldm_patched.pfn import model_loading
|
5 |
+
from ldm_patched.modules import model_management
|
6 |
+
import torch
|
7 |
+
import ldm_patched.modules.utils
|
8 |
+
import ldm_patched.utils.path_utils
|
9 |
+
|
10 |
+
class UpscaleModelLoader:
|
11 |
+
@classmethod
|
12 |
+
def INPUT_TYPES(s):
|
13 |
+
return {"required": { "model_name": (ldm_patched.utils.path_utils.get_filename_list("upscale_models"), ),
|
14 |
+
}}
|
15 |
+
RETURN_TYPES = ("UPSCALE_MODEL",)
|
16 |
+
FUNCTION = "load_model"
|
17 |
+
|
18 |
+
CATEGORY = "loaders"
|
19 |
+
|
20 |
+
def load_model(self, model_name):
|
21 |
+
model_path = ldm_patched.utils.path_utils.get_full_path("upscale_models", model_name)
|
22 |
+
sd = ldm_patched.modules.utils.load_torch_file(model_path, safe_load=True)
|
23 |
+
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
|
24 |
+
sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"module.":""})
|
25 |
+
out = model_loading.load_state_dict(sd).eval()
|
26 |
+
return (out, )
|
27 |
+
|
28 |
+
|
29 |
+
class ImageUpscaleWithModel:
|
30 |
+
@classmethod
|
31 |
+
def INPUT_TYPES(s):
|
32 |
+
return {"required": { "upscale_model": ("UPSCALE_MODEL",),
|
33 |
+
"image": ("IMAGE",),
|
34 |
+
}}
|
35 |
+
RETURN_TYPES = ("IMAGE",)
|
36 |
+
FUNCTION = "upscale"
|
37 |
+
|
38 |
+
CATEGORY = "image/upscaling"
|
39 |
+
|
40 |
+
def upscale(self, upscale_model, image):
|
41 |
+
device = model_management.get_torch_device()
|
42 |
+
upscale_model.to(device)
|
43 |
+
in_img = image.movedim(-1,-3).to(device)
|
44 |
+
free_memory = model_management.get_free_memory(device)
|
45 |
+
|
46 |
+
tile = 512
|
47 |
+
overlap = 32
|
48 |
+
|
49 |
+
oom = True
|
50 |
+
while oom:
|
51 |
+
try:
|
52 |
+
steps = in_img.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
|
53 |
+
pbar = ldm_patched.modules.utils.ProgressBar(steps)
|
54 |
+
s = ldm_patched.modules.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
|
55 |
+
oom = False
|
56 |
+
except model_management.OOM_EXCEPTION as e:
|
57 |
+
tile //= 2
|
58 |
+
if tile < 128:
|
59 |
+
raise e
|
60 |
+
|
61 |
+
upscale_model.cpu()
|
62 |
+
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
|
63 |
+
return (s,)
|
64 |
+
|
65 |
+
NODE_CLASS_MAPPINGS = {
|
66 |
+
"UpscaleModelLoader": UpscaleModelLoader,
|
67 |
+
"ImageUpscaleWithModel": ImageUpscaleWithModel
|
68 |
+
}
|
ldm_patched/contrib/external_video_model.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py
|
2 |
+
|
3 |
+
import ldm_patched.contrib.external
|
4 |
+
import torch
|
5 |
+
import ldm_patched.modules.utils
|
6 |
+
import ldm_patched.modules.sd
|
7 |
+
import ldm_patched.utils.path_utils
|
8 |
+
import ldm_patched.contrib.external_model_merging
|
9 |
+
|
10 |
+
|
11 |
+
class ImageOnlyCheckpointLoader:
|
12 |
+
@classmethod
|
13 |
+
def INPUT_TYPES(s):
|
14 |
+
return {"required": { "ckpt_name": (ldm_patched.utils.path_utils.get_filename_list("checkpoints"), ),
|
15 |
+
}}
|
16 |
+
RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE")
|
17 |
+
FUNCTION = "load_checkpoint"
|
18 |
+
|
19 |
+
CATEGORY = "loaders/video_models"
|
20 |
+
|
21 |
+
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
22 |
+
ckpt_path = ldm_patched.utils.path_utils.get_full_path("checkpoints", ckpt_name)
|
23 |
+
out = ldm_patched.modules.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=ldm_patched.utils.path_utils.get_folder_paths("embeddings"))
|
24 |
+
return (out[0], out[3], out[2])
|
25 |
+
|
26 |
+
|
27 |
+
class SVD_img2vid_Conditioning:
|
28 |
+
@classmethod
|
29 |
+
def INPUT_TYPES(s):
|
30 |
+
return {"required": { "clip_vision": ("CLIP_VISION",),
|
31 |
+
"init_image": ("IMAGE",),
|
32 |
+
"vae": ("VAE",),
|
33 |
+
"width": ("INT", {"default": 1024, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
|
34 |
+
"height": ("INT", {"default": 576, "min": 16, "max": ldm_patched.contrib.external.MAX_RESOLUTION, "step": 8}),
|
35 |
+
"video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}),
|
36 |
+
"motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}),
|
37 |
+
"fps": ("INT", {"default": 6, "min": 1, "max": 1024}),
|
38 |
+
"augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01})
|
39 |
+
}}
|
40 |
+
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
41 |
+
RETURN_NAMES = ("positive", "negative", "latent")
|
42 |
+
|
43 |
+
FUNCTION = "encode"
|
44 |
+
|
45 |
+
CATEGORY = "conditioning/video_models"
|
46 |
+
|
47 |
+
def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level):
|
48 |
+
output = clip_vision.encode_image(init_image)
|
49 |
+
pooled = output.image_embeds.unsqueeze(0)
|
50 |
+
pixels = ldm_patched.modules.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
51 |
+
encode_pixels = pixels[:,:,:,:3]
|
52 |
+
if augmentation_level > 0:
|
53 |
+
encode_pixels += torch.randn_like(pixels) * augmentation_level
|
54 |
+
t = vae.encode(encode_pixels)
|
55 |
+
positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]]
|
56 |
+
negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]]
|
57 |
+
latent = torch.zeros([video_frames, 4, height // 8, width // 8])
|
58 |
+
return (positive, negative, {"samples":latent})
|
59 |
+
|
60 |
+
class VideoLinearCFGGuidance:
|
61 |
+
@classmethod
|
62 |
+
def INPUT_TYPES(s):
|
63 |
+
return {"required": { "model": ("MODEL",),
|
64 |
+
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
|
65 |
+
}}
|
66 |
+
RETURN_TYPES = ("MODEL",)
|
67 |
+
FUNCTION = "patch"
|
68 |
+
|
69 |
+
CATEGORY = "sampling/video_models"
|
70 |
+
|
71 |
+
def patch(self, model, min_cfg):
|
72 |
+
def linear_cfg(args):
|
73 |
+
cond = args["cond"]
|
74 |
+
uncond = args["uncond"]
|
75 |
+
cond_scale = args["cond_scale"]
|
76 |
+
|
77 |
+
scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1))
|
78 |
+
return uncond + scale * (cond - uncond)
|
79 |
+
|
80 |
+
m = model.clone()
|
81 |
+
m.set_model_sampler_cfg_function(linear_cfg)
|
82 |
+
return (m, )
|
83 |
+
|
84 |
+
class ImageOnlyCheckpointSave(ldm_patched.contrib.external_model_merging.CheckpointSave):
|
85 |
+
CATEGORY = "_for_testing"
|
86 |
+
|
87 |
+
@classmethod
|
88 |
+
def INPUT_TYPES(s):
|
89 |
+
return {"required": { "model": ("MODEL",),
|
90 |
+
"clip_vision": ("CLIP_VISION",),
|
91 |
+
"vae": ("VAE",),
|
92 |
+
"filename_prefix": ("STRING", {"default": "checkpoints/ldm_patched"}),},
|
93 |
+
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
94 |
+
|
95 |
+
def save(self, model, clip_vision, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
96 |
+
ldm_patched.contrib.external_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
|
97 |
+
return {}
|
98 |
+
|
99 |
+
NODE_CLASS_MAPPINGS = {
|
100 |
+
"ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader,
|
101 |
+
"SVD_img2vid_Conditioning": SVD_img2vid_Conditioning,
|
102 |
+
"VideoLinearCFGGuidance": VideoLinearCFGGuidance,
|
103 |
+
"ImageOnlyCheckpointSave": ImageOnlyCheckpointSave,
|
104 |
+
}
|
105 |
+
|
106 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
107 |
+
"ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)",
|
108 |
+
}
|
ldm_patched/controlnet/cldm.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#taken from: https://github.com/lllyasviel/ControlNet
|
2 |
+
#and modified
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch as th
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from ldm_patched.ldm.modules.diffusionmodules.util import (
|
9 |
+
zero_module,
|
10 |
+
timestep_embedding,
|
11 |
+
)
|
12 |
+
|
13 |
+
from ldm_patched.ldm.modules.attention import SpatialTransformer
|
14 |
+
from ldm_patched.ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
15 |
+
from ldm_patched.ldm.util import exists
|
16 |
+
import ldm_patched.modules.ops
|
17 |
+
|
18 |
+
class ControlledUnetModel(UNetModel):
|
19 |
+
#implemented in the ldm unet
|
20 |
+
pass
|
21 |
+
|
22 |
+
class ControlNet(nn.Module):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
image_size,
|
26 |
+
in_channels,
|
27 |
+
model_channels,
|
28 |
+
hint_channels,
|
29 |
+
num_res_blocks,
|
30 |
+
dropout=0,
|
31 |
+
channel_mult=(1, 2, 4, 8),
|
32 |
+
conv_resample=True,
|
33 |
+
dims=2,
|
34 |
+
num_classes=None,
|
35 |
+
use_checkpoint=False,
|
36 |
+
dtype=torch.float32,
|
37 |
+
num_heads=-1,
|
38 |
+
num_head_channels=-1,
|
39 |
+
num_heads_upsample=-1,
|
40 |
+
use_scale_shift_norm=False,
|
41 |
+
resblock_updown=False,
|
42 |
+
use_new_attention_order=False,
|
43 |
+
use_spatial_transformer=False, # custom transformer support
|
44 |
+
transformer_depth=1, # custom transformer support
|
45 |
+
context_dim=None, # custom transformer support
|
46 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
47 |
+
legacy=True,
|
48 |
+
disable_self_attentions=None,
|
49 |
+
num_attention_blocks=None,
|
50 |
+
disable_middle_self_attn=False,
|
51 |
+
use_linear_in_transformer=False,
|
52 |
+
adm_in_channels=None,
|
53 |
+
transformer_depth_middle=None,
|
54 |
+
transformer_depth_output=None,
|
55 |
+
device=None,
|
56 |
+
operations=ldm_patched.modules.ops.disable_weight_init,
|
57 |
+
**kwargs,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
61 |
+
if use_spatial_transformer:
|
62 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
63 |
+
|
64 |
+
if context_dim is not None:
|
65 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
66 |
+
# from omegaconf.listconfig import ListConfig
|
67 |
+
# if type(context_dim) == ListConfig:
|
68 |
+
# context_dim = list(context_dim)
|
69 |
+
|
70 |
+
if num_heads_upsample == -1:
|
71 |
+
num_heads_upsample = num_heads
|
72 |
+
|
73 |
+
if num_heads == -1:
|
74 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
75 |
+
|
76 |
+
if num_head_channels == -1:
|
77 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
78 |
+
|
79 |
+
self.dims = dims
|
80 |
+
self.image_size = image_size
|
81 |
+
self.in_channels = in_channels
|
82 |
+
self.model_channels = model_channels
|
83 |
+
|
84 |
+
if isinstance(num_res_blocks, int):
|
85 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
86 |
+
else:
|
87 |
+
if len(num_res_blocks) != len(channel_mult):
|
88 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
89 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
90 |
+
self.num_res_blocks = num_res_blocks
|
91 |
+
|
92 |
+
if disable_self_attentions is not None:
|
93 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
94 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
95 |
+
if num_attention_blocks is not None:
|
96 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
97 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
98 |
+
|
99 |
+
transformer_depth = transformer_depth[:]
|
100 |
+
|
101 |
+
self.dropout = dropout
|
102 |
+
self.channel_mult = channel_mult
|
103 |
+
self.conv_resample = conv_resample
|
104 |
+
self.num_classes = num_classes
|
105 |
+
self.use_checkpoint = use_checkpoint
|
106 |
+
self.dtype = dtype
|
107 |
+
self.num_heads = num_heads
|
108 |
+
self.num_head_channels = num_head_channels
|
109 |
+
self.num_heads_upsample = num_heads_upsample
|
110 |
+
self.predict_codebook_ids = n_embed is not None
|
111 |
+
|
112 |
+
time_embed_dim = model_channels * 4
|
113 |
+
self.time_embed = nn.Sequential(
|
114 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
115 |
+
nn.SiLU(),
|
116 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
117 |
+
)
|
118 |
+
|
119 |
+
if self.num_classes is not None:
|
120 |
+
if isinstance(self.num_classes, int):
|
121 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
122 |
+
elif self.num_classes == "continuous":
|
123 |
+
print("setting up linear c_adm embedding layer")
|
124 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
125 |
+
elif self.num_classes == "sequential":
|
126 |
+
assert adm_in_channels is not None
|
127 |
+
self.label_emb = nn.Sequential(
|
128 |
+
nn.Sequential(
|
129 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
130 |
+
nn.SiLU(),
|
131 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
132 |
+
)
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
raise ValueError()
|
136 |
+
|
137 |
+
self.input_blocks = nn.ModuleList(
|
138 |
+
[
|
139 |
+
TimestepEmbedSequential(
|
140 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
141 |
+
)
|
142 |
+
]
|
143 |
+
)
|
144 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
|
145 |
+
|
146 |
+
self.input_hint_block = TimestepEmbedSequential(
|
147 |
+
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
148 |
+
nn.SiLU(),
|
149 |
+
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
150 |
+
nn.SiLU(),
|
151 |
+
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
152 |
+
nn.SiLU(),
|
153 |
+
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
154 |
+
nn.SiLU(),
|
155 |
+
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
156 |
+
nn.SiLU(),
|
157 |
+
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
158 |
+
nn.SiLU(),
|
159 |
+
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
160 |
+
nn.SiLU(),
|
161 |
+
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
162 |
+
)
|
163 |
+
|
164 |
+
self._feature_size = model_channels
|
165 |
+
input_block_chans = [model_channels]
|
166 |
+
ch = model_channels
|
167 |
+
ds = 1
|
168 |
+
for level, mult in enumerate(channel_mult):
|
169 |
+
for nr in range(self.num_res_blocks[level]):
|
170 |
+
layers = [
|
171 |
+
ResBlock(
|
172 |
+
ch,
|
173 |
+
time_embed_dim,
|
174 |
+
dropout,
|
175 |
+
out_channels=mult * model_channels,
|
176 |
+
dims=dims,
|
177 |
+
use_checkpoint=use_checkpoint,
|
178 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
179 |
+
dtype=self.dtype,
|
180 |
+
device=device,
|
181 |
+
operations=operations,
|
182 |
+
)
|
183 |
+
]
|
184 |
+
ch = mult * model_channels
|
185 |
+
num_transformers = transformer_depth.pop(0)
|
186 |
+
if num_transformers > 0:
|
187 |
+
if num_head_channels == -1:
|
188 |
+
dim_head = ch // num_heads
|
189 |
+
else:
|
190 |
+
num_heads = ch // num_head_channels
|
191 |
+
dim_head = num_head_channels
|
192 |
+
if legacy:
|
193 |
+
#num_heads = 1
|
194 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
195 |
+
if exists(disable_self_attentions):
|
196 |
+
disabled_sa = disable_self_attentions[level]
|
197 |
+
else:
|
198 |
+
disabled_sa = False
|
199 |
+
|
200 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
201 |
+
layers.append(
|
202 |
+
SpatialTransformer(
|
203 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
204 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
205 |
+
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
206 |
+
)
|
207 |
+
)
|
208 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
209 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
210 |
+
self._feature_size += ch
|
211 |
+
input_block_chans.append(ch)
|
212 |
+
if level != len(channel_mult) - 1:
|
213 |
+
out_ch = ch
|
214 |
+
self.input_blocks.append(
|
215 |
+
TimestepEmbedSequential(
|
216 |
+
ResBlock(
|
217 |
+
ch,
|
218 |
+
time_embed_dim,
|
219 |
+
dropout,
|
220 |
+
out_channels=out_ch,
|
221 |
+
dims=dims,
|
222 |
+
use_checkpoint=use_checkpoint,
|
223 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
224 |
+
down=True,
|
225 |
+
dtype=self.dtype,
|
226 |
+
device=device,
|
227 |
+
operations=operations
|
228 |
+
)
|
229 |
+
if resblock_updown
|
230 |
+
else Downsample(
|
231 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
232 |
+
)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
ch = out_ch
|
236 |
+
input_block_chans.append(ch)
|
237 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
238 |
+
ds *= 2
|
239 |
+
self._feature_size += ch
|
240 |
+
|
241 |
+
if num_head_channels == -1:
|
242 |
+
dim_head = ch // num_heads
|
243 |
+
else:
|
244 |
+
num_heads = ch // num_head_channels
|
245 |
+
dim_head = num_head_channels
|
246 |
+
if legacy:
|
247 |
+
#num_heads = 1
|
248 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
249 |
+
mid_block = [
|
250 |
+
ResBlock(
|
251 |
+
ch,
|
252 |
+
time_embed_dim,
|
253 |
+
dropout,
|
254 |
+
dims=dims,
|
255 |
+
use_checkpoint=use_checkpoint,
|
256 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
257 |
+
dtype=self.dtype,
|
258 |
+
device=device,
|
259 |
+
operations=operations
|
260 |
+
)]
|
261 |
+
if transformer_depth_middle >= 0:
|
262 |
+
mid_block += [SpatialTransformer( # always uses a self-attn
|
263 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
264 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
265 |
+
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
266 |
+
),
|
267 |
+
ResBlock(
|
268 |
+
ch,
|
269 |
+
time_embed_dim,
|
270 |
+
dropout,
|
271 |
+
dims=dims,
|
272 |
+
use_checkpoint=use_checkpoint,
|
273 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
274 |
+
dtype=self.dtype,
|
275 |
+
device=device,
|
276 |
+
operations=operations
|
277 |
+
)]
|
278 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
279 |
+
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
280 |
+
self._feature_size += ch
|
281 |
+
|
282 |
+
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
|
283 |
+
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
284 |
+
|
285 |
+
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
286 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
287 |
+
emb = self.time_embed(t_emb)
|
288 |
+
|
289 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
290 |
+
|
291 |
+
outs = []
|
292 |
+
|
293 |
+
hs = []
|
294 |
+
if self.num_classes is not None:
|
295 |
+
assert y.shape[0] == x.shape[0]
|
296 |
+
emb = emb + self.label_emb(y)
|
297 |
+
|
298 |
+
h = x
|
299 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
300 |
+
if guided_hint is not None:
|
301 |
+
h = module(h, emb, context)
|
302 |
+
h += guided_hint
|
303 |
+
guided_hint = None
|
304 |
+
else:
|
305 |
+
h = module(h, emb, context)
|
306 |
+
outs.append(zero_conv(h, emb, context))
|
307 |
+
|
308 |
+
h = self.middle_block(h, emb, context)
|
309 |
+
outs.append(self.middle_block_out(h, emb, context))
|
310 |
+
|
311 |
+
return outs
|
312 |
+
|
ldm_patched/k_diffusion/sampling.py
ADDED
@@ -0,0 +1,908 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
from scipy import integrate
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torchsde
|
7 |
+
from tqdm.auto import trange, tqdm
|
8 |
+
|
9 |
+
from . import utils
|
10 |
+
|
11 |
+
|
12 |
+
def append_zero(x):
|
13 |
+
return torch.cat([x, x.new_zeros([1])])
|
14 |
+
|
15 |
+
|
16 |
+
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
|
17 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
18 |
+
ramp = torch.linspace(0, 1, n, device=device)
|
19 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
20 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
21 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
22 |
+
return append_zero(sigmas).to(device)
|
23 |
+
|
24 |
+
|
25 |
+
def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
|
26 |
+
"""Constructs an exponential noise schedule."""
|
27 |
+
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
|
28 |
+
return append_zero(sigmas)
|
29 |
+
|
30 |
+
|
31 |
+
def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
|
32 |
+
"""Constructs an polynomial in log sigma noise schedule."""
|
33 |
+
ramp = torch.linspace(1, 0, n, device=device) ** rho
|
34 |
+
sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
|
35 |
+
return append_zero(sigmas)
|
36 |
+
|
37 |
+
|
38 |
+
def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
|
39 |
+
"""Constructs a continuous VP noise schedule."""
|
40 |
+
t = torch.linspace(1, eps_s, n, device=device)
|
41 |
+
sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
|
42 |
+
return append_zero(sigmas)
|
43 |
+
|
44 |
+
|
45 |
+
def to_d(x, sigma, denoised):
|
46 |
+
"""Converts a denoiser output to a Karras ODE derivative."""
|
47 |
+
return (x - denoised) / utils.append_dims(sigma, x.ndim)
|
48 |
+
|
49 |
+
|
50 |
+
def get_ancestral_step(sigma_from, sigma_to, eta=1.):
|
51 |
+
"""Calculates the noise level (sigma_down) to step down to and the amount
|
52 |
+
of noise to add (sigma_up) when doing an ancestral sampling step."""
|
53 |
+
if not eta:
|
54 |
+
return sigma_to, 0.
|
55 |
+
sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
|
56 |
+
sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
|
57 |
+
return sigma_down, sigma_up
|
58 |
+
|
59 |
+
|
60 |
+
def default_noise_sampler(x):
|
61 |
+
return lambda sigma, sigma_next: torch.randn_like(x)
|
62 |
+
|
63 |
+
|
64 |
+
class BatchedBrownianTree:
|
65 |
+
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
|
66 |
+
|
67 |
+
def __init__(self, x, t0, t1, seed=None, **kwargs):
|
68 |
+
self.cpu_tree = True
|
69 |
+
if "cpu" in kwargs:
|
70 |
+
self.cpu_tree = kwargs.pop("cpu")
|
71 |
+
t0, t1, self.sign = self.sort(t0, t1)
|
72 |
+
w0 = kwargs.get('w0', torch.zeros_like(x))
|
73 |
+
if seed is None:
|
74 |
+
seed = torch.randint(0, 2 ** 63 - 1, []).item()
|
75 |
+
self.batched = True
|
76 |
+
try:
|
77 |
+
assert len(seed) == x.shape[0]
|
78 |
+
w0 = w0[0]
|
79 |
+
except TypeError:
|
80 |
+
seed = [seed]
|
81 |
+
self.batched = False
|
82 |
+
if self.cpu_tree:
|
83 |
+
self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
|
84 |
+
else:
|
85 |
+
self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
def sort(a, b):
|
89 |
+
return (a, b, 1) if a < b else (b, a, -1)
|
90 |
+
|
91 |
+
def __call__(self, t0, t1):
|
92 |
+
t0, t1, sign = self.sort(t0, t1)
|
93 |
+
if self.cpu_tree:
|
94 |
+
w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
|
95 |
+
else:
|
96 |
+
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
|
97 |
+
|
98 |
+
return w if self.batched else w[0]
|
99 |
+
|
100 |
+
|
101 |
+
class BrownianTreeNoiseSampler:
|
102 |
+
"""A noise sampler backed by a torchsde.BrownianTree.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
x (Tensor): The tensor whose shape, device and dtype to use to generate
|
106 |
+
random samples.
|
107 |
+
sigma_min (float): The low end of the valid interval.
|
108 |
+
sigma_max (float): The high end of the valid interval.
|
109 |
+
seed (int or List[int]): The random seed. If a list of seeds is
|
110 |
+
supplied instead of a single integer, then the noise sampler will
|
111 |
+
use one BrownianTree per batch item, each with its own seed.
|
112 |
+
transform (callable): A function that maps sigma to the sampler's
|
113 |
+
internal timestep.
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
|
117 |
+
self.transform = transform
|
118 |
+
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
|
119 |
+
self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
|
120 |
+
|
121 |
+
def __call__(self, sigma, sigma_next):
|
122 |
+
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
|
123 |
+
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
|
124 |
+
|
125 |
+
|
126 |
+
@torch.no_grad()
|
127 |
+
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
128 |
+
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
129 |
+
extra_args = {} if extra_args is None else extra_args
|
130 |
+
s_in = x.new_ones([x.shape[0]])
|
131 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
132 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
133 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
134 |
+
if gamma > 0:
|
135 |
+
eps = torch.randn_like(x) * s_noise
|
136 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
137 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
138 |
+
d = to_d(x, sigma_hat, denoised)
|
139 |
+
if callback is not None:
|
140 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
141 |
+
dt = sigmas[i + 1] - sigma_hat
|
142 |
+
# Euler method
|
143 |
+
x = x + d * dt
|
144 |
+
return x
|
145 |
+
|
146 |
+
|
147 |
+
@torch.no_grad()
|
148 |
+
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
149 |
+
"""Ancestral sampling with Euler method steps."""
|
150 |
+
extra_args = {} if extra_args is None else extra_args
|
151 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
152 |
+
s_in = x.new_ones([x.shape[0]])
|
153 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
154 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
155 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
156 |
+
if callback is not None:
|
157 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
158 |
+
d = to_d(x, sigmas[i], denoised)
|
159 |
+
# Euler method
|
160 |
+
dt = sigma_down - sigmas[i]
|
161 |
+
x = x + d * dt
|
162 |
+
if sigmas[i + 1] > 0:
|
163 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
164 |
+
return x
|
165 |
+
|
166 |
+
|
167 |
+
@torch.no_grad()
|
168 |
+
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
169 |
+
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
|
170 |
+
extra_args = {} if extra_args is None else extra_args
|
171 |
+
s_in = x.new_ones([x.shape[0]])
|
172 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
173 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
174 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
175 |
+
if gamma > 0:
|
176 |
+
eps = torch.randn_like(x) * s_noise
|
177 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
178 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
179 |
+
d = to_d(x, sigma_hat, denoised)
|
180 |
+
if callback is not None:
|
181 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
182 |
+
dt = sigmas[i + 1] - sigma_hat
|
183 |
+
if sigmas[i + 1] == 0:
|
184 |
+
# Euler method
|
185 |
+
x = x + d * dt
|
186 |
+
else:
|
187 |
+
# Heun's method
|
188 |
+
x_2 = x + d * dt
|
189 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
190 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
191 |
+
d_prime = (d + d_2) / 2
|
192 |
+
x = x + d_prime * dt
|
193 |
+
return x
|
194 |
+
|
195 |
+
|
196 |
+
@torch.no_grad()
|
197 |
+
def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
198 |
+
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
|
199 |
+
extra_args = {} if extra_args is None else extra_args
|
200 |
+
s_in = x.new_ones([x.shape[0]])
|
201 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
202 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
203 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
204 |
+
if gamma > 0:
|
205 |
+
eps = torch.randn_like(x) * s_noise
|
206 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
207 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
208 |
+
d = to_d(x, sigma_hat, denoised)
|
209 |
+
if callback is not None:
|
210 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
211 |
+
if sigmas[i + 1] == 0:
|
212 |
+
# Euler method
|
213 |
+
dt = sigmas[i + 1] - sigma_hat
|
214 |
+
x = x + d * dt
|
215 |
+
else:
|
216 |
+
# DPM-Solver-2
|
217 |
+
sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
|
218 |
+
dt_1 = sigma_mid - sigma_hat
|
219 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
220 |
+
x_2 = x + d * dt_1
|
221 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
222 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
223 |
+
x = x + d_2 * dt_2
|
224 |
+
return x
|
225 |
+
|
226 |
+
|
227 |
+
@torch.no_grad()
|
228 |
+
def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
229 |
+
"""Ancestral sampling with DPM-Solver second-order steps."""
|
230 |
+
extra_args = {} if extra_args is None else extra_args
|
231 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
232 |
+
s_in = x.new_ones([x.shape[0]])
|
233 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
234 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
235 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
236 |
+
if callback is not None:
|
237 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
238 |
+
d = to_d(x, sigmas[i], denoised)
|
239 |
+
if sigma_down == 0:
|
240 |
+
# Euler method
|
241 |
+
dt = sigma_down - sigmas[i]
|
242 |
+
x = x + d * dt
|
243 |
+
else:
|
244 |
+
# DPM-Solver-2
|
245 |
+
sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
|
246 |
+
dt_1 = sigma_mid - sigmas[i]
|
247 |
+
dt_2 = sigma_down - sigmas[i]
|
248 |
+
x_2 = x + d * dt_1
|
249 |
+
denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
|
250 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
251 |
+
x = x + d_2 * dt_2
|
252 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
253 |
+
return x
|
254 |
+
|
255 |
+
|
256 |
+
def linear_multistep_coeff(order, t, i, j):
|
257 |
+
if order - 1 > i:
|
258 |
+
raise ValueError(f'Order {order} too high for step {i}')
|
259 |
+
def fn(tau):
|
260 |
+
prod = 1.
|
261 |
+
for k in range(order):
|
262 |
+
if j == k:
|
263 |
+
continue
|
264 |
+
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
|
265 |
+
return prod
|
266 |
+
return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
|
267 |
+
|
268 |
+
|
269 |
+
@torch.no_grad()
|
270 |
+
def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
|
271 |
+
extra_args = {} if extra_args is None else extra_args
|
272 |
+
s_in = x.new_ones([x.shape[0]])
|
273 |
+
sigmas_cpu = sigmas.detach().cpu().numpy()
|
274 |
+
ds = []
|
275 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
276 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
277 |
+
d = to_d(x, sigmas[i], denoised)
|
278 |
+
ds.append(d)
|
279 |
+
if len(ds) > order:
|
280 |
+
ds.pop(0)
|
281 |
+
if callback is not None:
|
282 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
283 |
+
cur_order = min(i + 1, order)
|
284 |
+
coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
|
285 |
+
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
286 |
+
return x
|
287 |
+
|
288 |
+
|
289 |
+
class PIDStepSizeController:
|
290 |
+
"""A PID controller for ODE adaptive step size control."""
|
291 |
+
def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
|
292 |
+
self.h = h
|
293 |
+
self.b1 = (pcoeff + icoeff + dcoeff) / order
|
294 |
+
self.b2 = -(pcoeff + 2 * dcoeff) / order
|
295 |
+
self.b3 = dcoeff / order
|
296 |
+
self.accept_safety = accept_safety
|
297 |
+
self.eps = eps
|
298 |
+
self.errs = []
|
299 |
+
|
300 |
+
def limiter(self, x):
|
301 |
+
return 1 + math.atan(x - 1)
|
302 |
+
|
303 |
+
def propose_step(self, error):
|
304 |
+
inv_error = 1 / (float(error) + self.eps)
|
305 |
+
if not self.errs:
|
306 |
+
self.errs = [inv_error, inv_error, inv_error]
|
307 |
+
self.errs[0] = inv_error
|
308 |
+
factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
|
309 |
+
factor = self.limiter(factor)
|
310 |
+
accept = factor >= self.accept_safety
|
311 |
+
if accept:
|
312 |
+
self.errs[2] = self.errs[1]
|
313 |
+
self.errs[1] = self.errs[0]
|
314 |
+
self.h *= factor
|
315 |
+
return accept
|
316 |
+
|
317 |
+
|
318 |
+
class DPMSolver(nn.Module):
|
319 |
+
"""DPM-Solver. See https://arxiv.org/abs/2206.00927."""
|
320 |
+
|
321 |
+
def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
|
322 |
+
super().__init__()
|
323 |
+
self.model = model
|
324 |
+
self.extra_args = {} if extra_args is None else extra_args
|
325 |
+
self.eps_callback = eps_callback
|
326 |
+
self.info_callback = info_callback
|
327 |
+
|
328 |
+
def t(self, sigma):
|
329 |
+
return -sigma.log()
|
330 |
+
|
331 |
+
def sigma(self, t):
|
332 |
+
return t.neg().exp()
|
333 |
+
|
334 |
+
def eps(self, eps_cache, key, x, t, *args, **kwargs):
|
335 |
+
if key in eps_cache:
|
336 |
+
return eps_cache[key], eps_cache
|
337 |
+
sigma = self.sigma(t) * x.new_ones([x.shape[0]])
|
338 |
+
eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
|
339 |
+
if self.eps_callback is not None:
|
340 |
+
self.eps_callback()
|
341 |
+
return eps, {key: eps, **eps_cache}
|
342 |
+
|
343 |
+
def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
|
344 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
345 |
+
h = t_next - t
|
346 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
347 |
+
x_1 = x - self.sigma(t_next) * h.expm1() * eps
|
348 |
+
return x_1, eps_cache
|
349 |
+
|
350 |
+
def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
|
351 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
352 |
+
h = t_next - t
|
353 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
354 |
+
s1 = t + r1 * h
|
355 |
+
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
|
356 |
+
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
|
357 |
+
x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
|
358 |
+
return x_2, eps_cache
|
359 |
+
|
360 |
+
def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
|
361 |
+
eps_cache = {} if eps_cache is None else eps_cache
|
362 |
+
h = t_next - t
|
363 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
364 |
+
s1 = t + r1 * h
|
365 |
+
s2 = t + r2 * h
|
366 |
+
u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
|
367 |
+
eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
|
368 |
+
u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
|
369 |
+
eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
|
370 |
+
x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
|
371 |
+
return x_3, eps_cache
|
372 |
+
|
373 |
+
def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
|
374 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
375 |
+
if not t_end > t_start and eta:
|
376 |
+
raise ValueError('eta must be 0 for reverse sampling')
|
377 |
+
|
378 |
+
m = math.floor(nfe / 3) + 1
|
379 |
+
ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
|
380 |
+
|
381 |
+
if nfe % 3 == 0:
|
382 |
+
orders = [3] * (m - 2) + [2, 1]
|
383 |
+
else:
|
384 |
+
orders = [3] * (m - 1) + [nfe % 3]
|
385 |
+
|
386 |
+
for i in range(len(orders)):
|
387 |
+
eps_cache = {}
|
388 |
+
t, t_next = ts[i], ts[i + 1]
|
389 |
+
if eta:
|
390 |
+
sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
|
391 |
+
t_next_ = torch.minimum(t_end, self.t(sd))
|
392 |
+
su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
|
393 |
+
else:
|
394 |
+
t_next_, su = t_next, 0.
|
395 |
+
|
396 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
|
397 |
+
denoised = x - self.sigma(t) * eps
|
398 |
+
if self.info_callback is not None:
|
399 |
+
self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
|
400 |
+
|
401 |
+
if orders[i] == 1:
|
402 |
+
x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
|
403 |
+
elif orders[i] == 2:
|
404 |
+
x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
|
405 |
+
else:
|
406 |
+
x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
|
407 |
+
|
408 |
+
x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
|
409 |
+
|
410 |
+
return x
|
411 |
+
|
412 |
+
def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
|
413 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
414 |
+
if order not in {2, 3}:
|
415 |
+
raise ValueError('order should be 2 or 3')
|
416 |
+
forward = t_end > t_start
|
417 |
+
if not forward and eta:
|
418 |
+
raise ValueError('eta must be 0 for reverse sampling')
|
419 |
+
h_init = abs(h_init) * (1 if forward else -1)
|
420 |
+
atol = torch.tensor(atol)
|
421 |
+
rtol = torch.tensor(rtol)
|
422 |
+
s = t_start
|
423 |
+
x_prev = x
|
424 |
+
accept = True
|
425 |
+
pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
|
426 |
+
info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
|
427 |
+
|
428 |
+
while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
|
429 |
+
eps_cache = {}
|
430 |
+
t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
|
431 |
+
if eta:
|
432 |
+
sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
|
433 |
+
t_ = torch.minimum(t_end, self.t(sd))
|
434 |
+
su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
|
435 |
+
else:
|
436 |
+
t_, su = t, 0.
|
437 |
+
|
438 |
+
eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
|
439 |
+
denoised = x - self.sigma(s) * eps
|
440 |
+
|
441 |
+
if order == 2:
|
442 |
+
x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
|
443 |
+
x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
|
444 |
+
else:
|
445 |
+
x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
|
446 |
+
x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
|
447 |
+
delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
|
448 |
+
error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
|
449 |
+
accept = pid.propose_step(error)
|
450 |
+
if accept:
|
451 |
+
x_prev = x_low
|
452 |
+
x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
|
453 |
+
s = t
|
454 |
+
info['n_accept'] += 1
|
455 |
+
else:
|
456 |
+
info['n_reject'] += 1
|
457 |
+
info['nfe'] += order
|
458 |
+
info['steps'] += 1
|
459 |
+
|
460 |
+
if self.info_callback is not None:
|
461 |
+
self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
|
462 |
+
|
463 |
+
return x, info
|
464 |
+
|
465 |
+
|
466 |
+
@torch.no_grad()
|
467 |
+
def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
|
468 |
+
"""DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
|
469 |
+
if sigma_min <= 0 or sigma_max <= 0:
|
470 |
+
raise ValueError('sigma_min and sigma_max must not be 0')
|
471 |
+
with tqdm(total=n, disable=disable) as pbar:
|
472 |
+
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
|
473 |
+
if callback is not None:
|
474 |
+
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
|
475 |
+
return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
|
476 |
+
|
477 |
+
|
478 |
+
@torch.no_grad()
|
479 |
+
def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
|
480 |
+
"""DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
|
481 |
+
if sigma_min <= 0 or sigma_max <= 0:
|
482 |
+
raise ValueError('sigma_min and sigma_max must not be 0')
|
483 |
+
with tqdm(disable=disable) as pbar:
|
484 |
+
dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
|
485 |
+
if callback is not None:
|
486 |
+
dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
|
487 |
+
x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
|
488 |
+
if return_info:
|
489 |
+
return x, info
|
490 |
+
return x
|
491 |
+
|
492 |
+
|
493 |
+
@torch.no_grad()
|
494 |
+
def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
495 |
+
"""Ancestral sampling with DPM-Solver++(2S) second-order steps."""
|
496 |
+
extra_args = {} if extra_args is None else extra_args
|
497 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
498 |
+
s_in = x.new_ones([x.shape[0]])
|
499 |
+
sigma_fn = lambda t: t.neg().exp()
|
500 |
+
t_fn = lambda sigma: sigma.log().neg()
|
501 |
+
|
502 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
503 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
504 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
505 |
+
if callback is not None:
|
506 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
507 |
+
if sigma_down == 0:
|
508 |
+
# Euler method
|
509 |
+
d = to_d(x, sigmas[i], denoised)
|
510 |
+
dt = sigma_down - sigmas[i]
|
511 |
+
x = x + d * dt
|
512 |
+
else:
|
513 |
+
# DPM-Solver++(2S)
|
514 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
|
515 |
+
r = 1 / 2
|
516 |
+
h = t_next - t
|
517 |
+
s = t + r * h
|
518 |
+
x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
|
519 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
520 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
|
521 |
+
# Noise addition
|
522 |
+
if sigmas[i + 1] > 0:
|
523 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
524 |
+
return x
|
525 |
+
|
526 |
+
|
527 |
+
@torch.no_grad()
|
528 |
+
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
529 |
+
"""DPM-Solver++ (stochastic)."""
|
530 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
531 |
+
seed = extra_args.get("seed", None)
|
532 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
533 |
+
extra_args = {} if extra_args is None else extra_args
|
534 |
+
s_in = x.new_ones([x.shape[0]])
|
535 |
+
sigma_fn = lambda t: t.neg().exp()
|
536 |
+
t_fn = lambda sigma: sigma.log().neg()
|
537 |
+
|
538 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
539 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
540 |
+
if callback is not None:
|
541 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
542 |
+
if sigmas[i + 1] == 0:
|
543 |
+
# Euler method
|
544 |
+
d = to_d(x, sigmas[i], denoised)
|
545 |
+
dt = sigmas[i + 1] - sigmas[i]
|
546 |
+
x = x + d * dt
|
547 |
+
else:
|
548 |
+
# DPM-Solver++
|
549 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
550 |
+
h = t_next - t
|
551 |
+
s = t + h * r
|
552 |
+
fac = 1 / (2 * r)
|
553 |
+
|
554 |
+
# Step 1
|
555 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
|
556 |
+
s_ = t_fn(sd)
|
557 |
+
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
|
558 |
+
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
|
559 |
+
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
|
560 |
+
|
561 |
+
# Step 2
|
562 |
+
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
|
563 |
+
t_next_ = t_fn(sd)
|
564 |
+
denoised_d = (1 - fac) * denoised + fac * denoised_2
|
565 |
+
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
|
566 |
+
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
|
567 |
+
return x
|
568 |
+
|
569 |
+
|
570 |
+
@torch.no_grad()
|
571 |
+
def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
572 |
+
"""DPM-Solver++(2M)."""
|
573 |
+
extra_args = {} if extra_args is None else extra_args
|
574 |
+
s_in = x.new_ones([x.shape[0]])
|
575 |
+
sigma_fn = lambda t: t.neg().exp()
|
576 |
+
t_fn = lambda sigma: sigma.log().neg()
|
577 |
+
old_denoised = None
|
578 |
+
|
579 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
580 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
581 |
+
if callback is not None:
|
582 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
583 |
+
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
|
584 |
+
h = t_next - t
|
585 |
+
if old_denoised is None or sigmas[i + 1] == 0:
|
586 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
|
587 |
+
else:
|
588 |
+
h_last = t - t_fn(sigmas[i - 1])
|
589 |
+
r = h_last / h
|
590 |
+
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
|
591 |
+
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
|
592 |
+
old_denoised = denoised
|
593 |
+
return x
|
594 |
+
|
595 |
+
@torch.no_grad()
|
596 |
+
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
597 |
+
"""DPM-Solver++(2M) SDE."""
|
598 |
+
|
599 |
+
if solver_type not in {'heun', 'midpoint'}:
|
600 |
+
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
|
601 |
+
|
602 |
+
seed = extra_args.get("seed", None)
|
603 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
604 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
605 |
+
extra_args = {} if extra_args is None else extra_args
|
606 |
+
s_in = x.new_ones([x.shape[0]])
|
607 |
+
|
608 |
+
old_denoised = None
|
609 |
+
h_last = None
|
610 |
+
h = None
|
611 |
+
|
612 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
613 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
614 |
+
if callback is not None:
|
615 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
616 |
+
if sigmas[i + 1] == 0:
|
617 |
+
# Denoising step
|
618 |
+
x = denoised
|
619 |
+
else:
|
620 |
+
# DPM-Solver++(2M) SDE
|
621 |
+
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
622 |
+
h = s - t
|
623 |
+
eta_h = eta * h
|
624 |
+
|
625 |
+
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
|
626 |
+
|
627 |
+
if old_denoised is not None:
|
628 |
+
r = h_last / h
|
629 |
+
if solver_type == 'heun':
|
630 |
+
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
|
631 |
+
elif solver_type == 'midpoint':
|
632 |
+
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
|
633 |
+
|
634 |
+
if eta:
|
635 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
|
636 |
+
|
637 |
+
old_denoised = denoised
|
638 |
+
h_last = h
|
639 |
+
return x
|
640 |
+
|
641 |
+
@torch.no_grad()
|
642 |
+
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
643 |
+
"""DPM-Solver++(3M) SDE."""
|
644 |
+
|
645 |
+
seed = extra_args.get("seed", None)
|
646 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
647 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
648 |
+
extra_args = {} if extra_args is None else extra_args
|
649 |
+
s_in = x.new_ones([x.shape[0]])
|
650 |
+
|
651 |
+
denoised_1, denoised_2 = None, None
|
652 |
+
h, h_1, h_2 = None, None, None
|
653 |
+
|
654 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
655 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
656 |
+
if callback is not None:
|
657 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
658 |
+
if sigmas[i + 1] == 0:
|
659 |
+
# Denoising step
|
660 |
+
x = denoised
|
661 |
+
else:
|
662 |
+
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
|
663 |
+
h = s - t
|
664 |
+
h_eta = h * (eta + 1)
|
665 |
+
|
666 |
+
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
|
667 |
+
|
668 |
+
if h_2 is not None:
|
669 |
+
r0 = h_1 / h
|
670 |
+
r1 = h_2 / h
|
671 |
+
d1_0 = (denoised - denoised_1) / r0
|
672 |
+
d1_1 = (denoised_1 - denoised_2) / r1
|
673 |
+
d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
|
674 |
+
d2 = (d1_0 - d1_1) / (r0 + r1)
|
675 |
+
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
676 |
+
phi_3 = phi_2 / h_eta - 0.5
|
677 |
+
x = x + phi_2 * d1 - phi_3 * d2
|
678 |
+
elif h_1 is not None:
|
679 |
+
r = h_1 / h
|
680 |
+
d = (denoised - denoised_1) / r
|
681 |
+
phi_2 = h_eta.neg().expm1() / h_eta + 1
|
682 |
+
x = x + phi_2 * d
|
683 |
+
|
684 |
+
if eta:
|
685 |
+
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
|
686 |
+
|
687 |
+
denoised_1, denoised_2 = denoised, denoised_1
|
688 |
+
h_1, h_2 = h, h_1
|
689 |
+
return x
|
690 |
+
|
691 |
+
@torch.no_grad()
|
692 |
+
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
693 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
694 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
695 |
+
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
696 |
+
|
697 |
+
@torch.no_grad()
|
698 |
+
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
699 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
700 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
701 |
+
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
702 |
+
|
703 |
+
@torch.no_grad()
|
704 |
+
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
705 |
+
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
706 |
+
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
707 |
+
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
|
708 |
+
|
709 |
+
|
710 |
+
def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
|
711 |
+
alpha_cumprod = 1 / ((sigma * sigma) + 1)
|
712 |
+
alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
|
713 |
+
alpha = (alpha_cumprod / alpha_cumprod_prev)
|
714 |
+
|
715 |
+
mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
|
716 |
+
if sigma_prev > 0:
|
717 |
+
mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
|
718 |
+
return mu
|
719 |
+
|
720 |
+
def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
|
721 |
+
extra_args = {} if extra_args is None else extra_args
|
722 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
723 |
+
s_in = x.new_ones([x.shape[0]])
|
724 |
+
|
725 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
726 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
727 |
+
if callback is not None:
|
728 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
729 |
+
x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
|
730 |
+
if sigmas[i + 1] != 0:
|
731 |
+
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
|
732 |
+
return x
|
733 |
+
|
734 |
+
|
735 |
+
@torch.no_grad()
|
736 |
+
def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
737 |
+
return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
|
738 |
+
|
739 |
+
@torch.no_grad()
|
740 |
+
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
|
741 |
+
extra_args = {} if extra_args is None else extra_args
|
742 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
743 |
+
s_in = x.new_ones([x.shape[0]])
|
744 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
745 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
746 |
+
if callback is not None:
|
747 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
748 |
+
|
749 |
+
x = denoised
|
750 |
+
if sigmas[i + 1] > 0:
|
751 |
+
x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
|
752 |
+
return x
|
753 |
+
|
754 |
+
|
755 |
+
@torch.no_grad()
|
756 |
+
def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
757 |
+
# From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
|
758 |
+
extra_args = {} if extra_args is None else extra_args
|
759 |
+
s_in = x.new_ones([x.shape[0]])
|
760 |
+
s_end = sigmas[-1]
|
761 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
762 |
+
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
|
763 |
+
eps = torch.randn_like(x) * s_noise
|
764 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
765 |
+
if gamma > 0:
|
766 |
+
x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
|
767 |
+
denoised = model(x, sigma_hat * s_in, **extra_args)
|
768 |
+
d = to_d(x, sigma_hat, denoised)
|
769 |
+
if callback is not None:
|
770 |
+
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
771 |
+
dt = sigmas[i + 1] - sigma_hat
|
772 |
+
if sigmas[i + 1] == s_end:
|
773 |
+
# Euler method
|
774 |
+
x = x + d * dt
|
775 |
+
elif sigmas[i + 2] == s_end:
|
776 |
+
|
777 |
+
# Heun's method
|
778 |
+
x_2 = x + d * dt
|
779 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
780 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
781 |
+
|
782 |
+
w = 2 * sigmas[0]
|
783 |
+
w2 = sigmas[i+1]/w
|
784 |
+
w1 = 1 - w2
|
785 |
+
|
786 |
+
d_prime = d * w1 + d_2 * w2
|
787 |
+
|
788 |
+
|
789 |
+
x = x + d_prime * dt
|
790 |
+
|
791 |
+
else:
|
792 |
+
# Heun++
|
793 |
+
x_2 = x + d * dt
|
794 |
+
denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
|
795 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
796 |
+
dt_2 = sigmas[i + 2] - sigmas[i + 1]
|
797 |
+
|
798 |
+
x_3 = x_2 + d_2 * dt_2
|
799 |
+
denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
|
800 |
+
d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
|
801 |
+
|
802 |
+
w = 3 * sigmas[0]
|
803 |
+
w2 = sigmas[i + 1] / w
|
804 |
+
w3 = sigmas[i + 2] / w
|
805 |
+
w1 = 1 - w2 - w3
|
806 |
+
|
807 |
+
d_prime = w1 * d + w2 * d_2 + w3 * d_3
|
808 |
+
x = x + d_prime * dt
|
809 |
+
return x
|
810 |
+
|
811 |
+
|
812 |
+
@torch.no_grad()
|
813 |
+
def sample_tcd(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, eta=0.3):
|
814 |
+
extra_args = {} if extra_args is None else extra_args
|
815 |
+
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
816 |
+
s_in = x.new_ones([x.shape[0]])
|
817 |
+
|
818 |
+
model_sampling = model.inner_model.inner_model.model_sampling
|
819 |
+
timesteps_s = torch.floor((1 - eta) * model_sampling.timestep(sigmas)).to(dtype=torch.long).detach().cpu()
|
820 |
+
timesteps_s[-1] = 0
|
821 |
+
alpha_prod_s = model_sampling.alphas_cumprod[timesteps_s]
|
822 |
+
beta_prod_s = 1 - alpha_prod_s
|
823 |
+
for i in trange(len(sigmas) - 1, disable=disable):
|
824 |
+
denoised = model(x, sigmas[i] * s_in, **extra_args) # predicted_original_sample
|
825 |
+
eps = (x - denoised) / sigmas[i]
|
826 |
+
denoised = alpha_prod_s[i + 1].sqrt() * denoised + beta_prod_s[i + 1].sqrt() * eps
|
827 |
+
|
828 |
+
if callback is not None:
|
829 |
+
callback({"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "denoised": denoised})
|
830 |
+
|
831 |
+
x = denoised
|
832 |
+
if eta > 0 and sigmas[i + 1] > 0:
|
833 |
+
noise = noise_sampler(sigmas[i], sigmas[i + 1])
|
834 |
+
x = x / alpha_prod_s[i+1].sqrt() + noise * (sigmas[i+1]**2 + 1 - 1/alpha_prod_s[i+1]).sqrt()
|
835 |
+
else:
|
836 |
+
x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2)
|
837 |
+
|
838 |
+
return x
|
839 |
+
|
840 |
+
|
841 |
+
@torch.no_grad()
|
842 |
+
def sample_restart(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
|
843 |
+
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
|
844 |
+
Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
|
845 |
+
If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
|
846 |
+
"""
|
847 |
+
extra_args = {} if extra_args is None else extra_args
|
848 |
+
s_in = x.new_ones([x.shape[0]])
|
849 |
+
step_id = 0
|
850 |
+
|
851 |
+
def heun_step(x, old_sigma, new_sigma, second_order=True):
|
852 |
+
nonlocal step_id
|
853 |
+
denoised = model(x, old_sigma * s_in, **extra_args)
|
854 |
+
d = to_d(x, old_sigma, denoised)
|
855 |
+
if callback is not None:
|
856 |
+
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
|
857 |
+
dt = new_sigma - old_sigma
|
858 |
+
if new_sigma == 0 or not second_order:
|
859 |
+
# Euler method
|
860 |
+
x = x + d * dt
|
861 |
+
else:
|
862 |
+
# Heun's method
|
863 |
+
x_2 = x + d * dt
|
864 |
+
denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
|
865 |
+
d_2 = to_d(x_2, new_sigma, denoised_2)
|
866 |
+
d_prime = (d + d_2) / 2
|
867 |
+
x = x + d_prime * dt
|
868 |
+
step_id += 1
|
869 |
+
return x
|
870 |
+
|
871 |
+
steps = sigmas.shape[0] - 1
|
872 |
+
if restart_list is None:
|
873 |
+
if steps >= 20:
|
874 |
+
restart_steps = 9
|
875 |
+
restart_times = 1
|
876 |
+
if steps >= 36:
|
877 |
+
restart_steps = steps // 4
|
878 |
+
restart_times = 2
|
879 |
+
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
|
880 |
+
restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
|
881 |
+
else:
|
882 |
+
restart_list = {}
|
883 |
+
|
884 |
+
restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}
|
885 |
+
|
886 |
+
step_list = []
|
887 |
+
for i in range(len(sigmas) - 1):
|
888 |
+
step_list.append((sigmas[i], sigmas[i + 1]))
|
889 |
+
if i + 1 in restart_list:
|
890 |
+
restart_steps, restart_times, restart_max = restart_list[i + 1]
|
891 |
+
min_idx = i + 1
|
892 |
+
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
|
893 |
+
if max_idx < min_idx:
|
894 |
+
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
|
895 |
+
while restart_times > 0:
|
896 |
+
restart_times -= 1
|
897 |
+
step_list.extend(zip(sigma_restart[:-1], sigma_restart[1:]))
|
898 |
+
|
899 |
+
last_sigma = None
|
900 |
+
for old_sigma, new_sigma in tqdm(step_list, disable=disable):
|
901 |
+
if last_sigma is None:
|
902 |
+
last_sigma = old_sigma
|
903 |
+
elif last_sigma < old_sigma:
|
904 |
+
x = x + torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
|
905 |
+
x = heun_step(x, old_sigma, new_sigma)
|
906 |
+
last_sigma = new_sigma
|
907 |
+
|
908 |
+
return x
|
ldm_patched/k_diffusion/utils.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
import hashlib
|
3 |
+
import math
|
4 |
+
from pathlib import Path
|
5 |
+
import shutil
|
6 |
+
import urllib
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
from PIL import Image
|
10 |
+
import torch
|
11 |
+
from torch import nn, optim
|
12 |
+
from torch.utils import data
|
13 |
+
|
14 |
+
|
15 |
+
def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):
|
16 |
+
"""Apply passed in transforms for HuggingFace Datasets."""
|
17 |
+
images = [transform(image.convert(mode)) for image in examples[image_key]]
|
18 |
+
return {image_key: images}
|
19 |
+
|
20 |
+
|
21 |
+
def append_dims(x, target_dims):
|
22 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
23 |
+
dims_to_append = target_dims - x.ndim
|
24 |
+
if dims_to_append < 0:
|
25 |
+
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
26 |
+
expanded = x[(...,) + (None,) * dims_to_append]
|
27 |
+
# MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
|
28 |
+
# https://github.com/pytorch/pytorch/issues/84364
|
29 |
+
return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
|
30 |
+
|
31 |
+
|
32 |
+
def n_params(module):
|
33 |
+
"""Returns the number of trainable parameters in a module."""
|
34 |
+
return sum(p.numel() for p in module.parameters())
|
35 |
+
|
36 |
+
|
37 |
+
def download_file(path, url, digest=None):
|
38 |
+
"""Downloads a file if it does not exist, optionally checking its SHA-256 hash."""
|
39 |
+
path = Path(path)
|
40 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
41 |
+
if not path.exists():
|
42 |
+
with urllib.request.urlopen(url) as response, open(path, 'wb') as f:
|
43 |
+
shutil.copyfileobj(response, f)
|
44 |
+
if digest is not None:
|
45 |
+
file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest()
|
46 |
+
if digest != file_digest:
|
47 |
+
raise OSError(f'hash of {path} (url: {url}) failed to validate')
|
48 |
+
return path
|
49 |
+
|
50 |
+
|
51 |
+
@contextmanager
|
52 |
+
def train_mode(model, mode=True):
|
53 |
+
"""A context manager that places a model into training mode and restores
|
54 |
+
the previous mode on exit."""
|
55 |
+
modes = [module.training for module in model.modules()]
|
56 |
+
try:
|
57 |
+
yield model.train(mode)
|
58 |
+
finally:
|
59 |
+
for i, module in enumerate(model.modules()):
|
60 |
+
module.training = modes[i]
|
61 |
+
|
62 |
+
|
63 |
+
def eval_mode(model):
|
64 |
+
"""A context manager that places a model into evaluation mode and restores
|
65 |
+
the previous mode on exit."""
|
66 |
+
return train_mode(model, False)
|
67 |
+
|
68 |
+
|
69 |
+
@torch.no_grad()
|
70 |
+
def ema_update(model, averaged_model, decay):
|
71 |
+
"""Incorporates updated model parameters into an exponential moving averaged
|
72 |
+
version of a model. It should be called after each optimizer step."""
|
73 |
+
model_params = dict(model.named_parameters())
|
74 |
+
averaged_params = dict(averaged_model.named_parameters())
|
75 |
+
assert model_params.keys() == averaged_params.keys()
|
76 |
+
|
77 |
+
for name, param in model_params.items():
|
78 |
+
averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
|
79 |
+
|
80 |
+
model_buffers = dict(model.named_buffers())
|
81 |
+
averaged_buffers = dict(averaged_model.named_buffers())
|
82 |
+
assert model_buffers.keys() == averaged_buffers.keys()
|
83 |
+
|
84 |
+
for name, buf in model_buffers.items():
|
85 |
+
averaged_buffers[name].copy_(buf)
|
86 |
+
|
87 |
+
|
88 |
+
class EMAWarmup:
|
89 |
+
"""Implements an EMA warmup using an inverse decay schedule.
|
90 |
+
If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
|
91 |
+
good values for models you plan to train for a million or more steps (reaches decay
|
92 |
+
factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
|
93 |
+
you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
|
94 |
+
215.4k steps).
|
95 |
+
Args:
|
96 |
+
inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
|
97 |
+
power (float): Exponential factor of EMA warmup. Default: 1.
|
98 |
+
min_value (float): The minimum EMA decay rate. Default: 0.
|
99 |
+
max_value (float): The maximum EMA decay rate. Default: 1.
|
100 |
+
start_at (int): The epoch to start averaging at. Default: 0.
|
101 |
+
last_epoch (int): The index of last epoch. Default: 0.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0,
|
105 |
+
last_epoch=0):
|
106 |
+
self.inv_gamma = inv_gamma
|
107 |
+
self.power = power
|
108 |
+
self.min_value = min_value
|
109 |
+
self.max_value = max_value
|
110 |
+
self.start_at = start_at
|
111 |
+
self.last_epoch = last_epoch
|
112 |
+
|
113 |
+
def state_dict(self):
|
114 |
+
"""Returns the state of the class as a :class:`dict`."""
|
115 |
+
return dict(self.__dict__.items())
|
116 |
+
|
117 |
+
def load_state_dict(self, state_dict):
|
118 |
+
"""Loads the class's state.
|
119 |
+
Args:
|
120 |
+
state_dict (dict): scaler state. Should be an object returned
|
121 |
+
from a call to :meth:`state_dict`.
|
122 |
+
"""
|
123 |
+
self.__dict__.update(state_dict)
|
124 |
+
|
125 |
+
def get_value(self):
|
126 |
+
"""Gets the current EMA decay rate."""
|
127 |
+
epoch = max(0, self.last_epoch - self.start_at)
|
128 |
+
value = 1 - (1 + epoch / self.inv_gamma) ** -self.power
|
129 |
+
return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value))
|
130 |
+
|
131 |
+
def step(self):
|
132 |
+
"""Updates the step count."""
|
133 |
+
self.last_epoch += 1
|
134 |
+
|
135 |
+
|
136 |
+
class InverseLR(optim.lr_scheduler._LRScheduler):
|
137 |
+
"""Implements an inverse decay learning rate schedule with an optional exponential
|
138 |
+
warmup. When last_epoch=-1, sets initial lr as lr.
|
139 |
+
inv_gamma is the number of steps/epochs required for the learning rate to decay to
|
140 |
+
(1 / 2)**power of its original value.
|
141 |
+
Args:
|
142 |
+
optimizer (Optimizer): Wrapped optimizer.
|
143 |
+
inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
|
144 |
+
power (float): Exponential factor of learning rate decay. Default: 1.
|
145 |
+
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
|
146 |
+
Default: 0.
|
147 |
+
min_lr (float): The minimum learning rate. Default: 0.
|
148 |
+
last_epoch (int): The index of last epoch. Default: -1.
|
149 |
+
verbose (bool): If ``True``, prints a message to stdout for
|
150 |
+
each update. Default: ``False``.
|
151 |
+
"""
|
152 |
+
|
153 |
+
def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0.,
|
154 |
+
last_epoch=-1, verbose=False):
|
155 |
+
self.inv_gamma = inv_gamma
|
156 |
+
self.power = power
|
157 |
+
if not 0. <= warmup < 1:
|
158 |
+
raise ValueError('Invalid value for warmup')
|
159 |
+
self.warmup = warmup
|
160 |
+
self.min_lr = min_lr
|
161 |
+
super().__init__(optimizer, last_epoch, verbose)
|
162 |
+
|
163 |
+
def get_lr(self):
|
164 |
+
if not self._get_lr_called_within_step:
|
165 |
+
warnings.warn("To get the last learning rate computed by the scheduler, "
|
166 |
+
"please use `get_last_lr()`.")
|
167 |
+
|
168 |
+
return self._get_closed_form_lr()
|
169 |
+
|
170 |
+
def _get_closed_form_lr(self):
|
171 |
+
warmup = 1 - self.warmup ** (self.last_epoch + 1)
|
172 |
+
lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
|
173 |
+
return [warmup * max(self.min_lr, base_lr * lr_mult)
|
174 |
+
for base_lr in self.base_lrs]
|
175 |
+
|
176 |
+
|
177 |
+
class ExponentialLR(optim.lr_scheduler._LRScheduler):
|
178 |
+
"""Implements an exponential learning rate schedule with an optional exponential
|
179 |
+
warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate
|
180 |
+
continuously by decay (default 0.5) every num_steps steps.
|
181 |
+
Args:
|
182 |
+
optimizer (Optimizer): Wrapped optimizer.
|
183 |
+
num_steps (float): The number of steps to decay the learning rate by decay in.
|
184 |
+
decay (float): The factor by which to decay the learning rate every num_steps
|
185 |
+
steps. Default: 0.5.
|
186 |
+
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
|
187 |
+
Default: 0.
|
188 |
+
min_lr (float): The minimum learning rate. Default: 0.
|
189 |
+
last_epoch (int): The index of last epoch. Default: -1.
|
190 |
+
verbose (bool): If ``True``, prints a message to stdout for
|
191 |
+
each update. Default: ``False``.
|
192 |
+
"""
|
193 |
+
|
194 |
+
def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0.,
|
195 |
+
last_epoch=-1, verbose=False):
|
196 |
+
self.num_steps = num_steps
|
197 |
+
self.decay = decay
|
198 |
+
if not 0. <= warmup < 1:
|
199 |
+
raise ValueError('Invalid value for warmup')
|
200 |
+
self.warmup = warmup
|
201 |
+
self.min_lr = min_lr
|
202 |
+
super().__init__(optimizer, last_epoch, verbose)
|
203 |
+
|
204 |
+
def get_lr(self):
|
205 |
+
if not self._get_lr_called_within_step:
|
206 |
+
warnings.warn("To get the last learning rate computed by the scheduler, "
|
207 |
+
"please use `get_last_lr()`.")
|
208 |
+
|
209 |
+
return self._get_closed_form_lr()
|
210 |
+
|
211 |
+
def _get_closed_form_lr(self):
|
212 |
+
warmup = 1 - self.warmup ** (self.last_epoch + 1)
|
213 |
+
lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch
|
214 |
+
return [warmup * max(self.min_lr, base_lr * lr_mult)
|
215 |
+
for base_lr in self.base_lrs]
|
216 |
+
|
217 |
+
|
218 |
+
def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
|
219 |
+
"""Draws samples from an lognormal distribution."""
|
220 |
+
return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp()
|
221 |
+
|
222 |
+
|
223 |
+
def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
|
224 |
+
"""Draws samples from an optionally truncated log-logistic distribution."""
|
225 |
+
min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64)
|
226 |
+
max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64)
|
227 |
+
min_cdf = min_value.log().sub(loc).div(scale).sigmoid()
|
228 |
+
max_cdf = max_value.log().sub(loc).div(scale).sigmoid()
|
229 |
+
u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf
|
230 |
+
return u.logit().mul(scale).add(loc).exp().to(dtype)
|
231 |
+
|
232 |
+
|
233 |
+
def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32):
|
234 |
+
"""Draws samples from an log-uniform distribution."""
|
235 |
+
min_value = math.log(min_value)
|
236 |
+
max_value = math.log(max_value)
|
237 |
+
return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp()
|
238 |
+
|
239 |
+
|
240 |
+
def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
|
241 |
+
"""Draws samples from a truncated v-diffusion training timestep distribution."""
|
242 |
+
min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi
|
243 |
+
max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi
|
244 |
+
u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf
|
245 |
+
return torch.tan(u * math.pi / 2) * sigma_data
|
246 |
+
|
247 |
+
|
248 |
+
def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32):
|
249 |
+
"""Draws samples from a split lognormal distribution."""
|
250 |
+
n = torch.randn(shape, device=device, dtype=dtype).abs()
|
251 |
+
u = torch.rand(shape, device=device, dtype=dtype)
|
252 |
+
n_left = n * -scale_1 + loc
|
253 |
+
n_right = n * scale_2 + loc
|
254 |
+
ratio = scale_1 / (scale_1 + scale_2)
|
255 |
+
return torch.where(u < ratio, n_left, n_right).exp()
|
256 |
+
|
257 |
+
|
258 |
+
class FolderOfImages(data.Dataset):
|
259 |
+
"""Recursively finds all images in a directory. It does not support
|
260 |
+
classes/targets."""
|
261 |
+
|
262 |
+
IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'}
|
263 |
+
|
264 |
+
def __init__(self, root, transform=None):
|
265 |
+
super().__init__()
|
266 |
+
self.root = Path(root)
|
267 |
+
self.transform = nn.Identity() if transform is None else transform
|
268 |
+
self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS)
|
269 |
+
|
270 |
+
def __repr__(self):
|
271 |
+
return f'FolderOfImages(root="{self.root}", len: {len(self)})'
|
272 |
+
|
273 |
+
def __len__(self):
|
274 |
+
return len(self.paths)
|
275 |
+
|
276 |
+
def __getitem__(self, key):
|
277 |
+
path = self.paths[key]
|
278 |
+
with open(path, 'rb') as f:
|
279 |
+
image = Image.open(f).convert('RGB')
|
280 |
+
image = self.transform(image)
|
281 |
+
return image,
|
282 |
+
|
283 |
+
|
284 |
+
class CSVLogger:
|
285 |
+
def __init__(self, filename, columns):
|
286 |
+
self.filename = Path(filename)
|
287 |
+
self.columns = columns
|
288 |
+
if self.filename.exists():
|
289 |
+
self.file = open(self.filename, 'a')
|
290 |
+
else:
|
291 |
+
self.file = open(self.filename, 'w')
|
292 |
+
self.write(*self.columns)
|
293 |
+
|
294 |
+
def write(self, *args):
|
295 |
+
print(*args, sep=',', file=self.file, flush=True)
|
296 |
+
|
297 |
+
|
298 |
+
@contextmanager
|
299 |
+
def tf32_mode(cudnn=None, matmul=None):
|
300 |
+
"""A context manager that sets whether TF32 is allowed on cuDNN or matmul."""
|
301 |
+
cudnn_old = torch.backends.cudnn.allow_tf32
|
302 |
+
matmul_old = torch.backends.cuda.matmul.allow_tf32
|
303 |
+
try:
|
304 |
+
if cudnn is not None:
|
305 |
+
torch.backends.cudnn.allow_tf32 = cudnn
|
306 |
+
if matmul is not None:
|
307 |
+
torch.backends.cuda.matmul.allow_tf32 = matmul
|
308 |
+
yield
|
309 |
+
finally:
|
310 |
+
if cudnn is not None:
|
311 |
+
torch.backends.cudnn.allow_tf32 = cudnn_old
|
312 |
+
if matmul is not None:
|
313 |
+
torch.backends.cuda.matmul.allow_tf32 = matmul_old
|
ldm_patched/ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
# import pytorch_lightning as pl
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from contextlib import contextmanager
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
from ldm_patched.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
8 |
+
|
9 |
+
from ldm_patched.ldm.util import instantiate_from_config
|
10 |
+
from ldm_patched.ldm.modules.ema import LitEma
|
11 |
+
import ldm_patched.modules.ops
|
12 |
+
|
13 |
+
class DiagonalGaussianRegularizer(torch.nn.Module):
|
14 |
+
def __init__(self, sample: bool = True):
|
15 |
+
super().__init__()
|
16 |
+
self.sample = sample
|
17 |
+
|
18 |
+
def get_trainable_parameters(self) -> Any:
|
19 |
+
yield from ()
|
20 |
+
|
21 |
+
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
22 |
+
log = dict()
|
23 |
+
posterior = DiagonalGaussianDistribution(z)
|
24 |
+
if self.sample:
|
25 |
+
z = posterior.sample()
|
26 |
+
else:
|
27 |
+
z = posterior.mode()
|
28 |
+
kl_loss = posterior.kl()
|
29 |
+
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
30 |
+
log["kl_loss"] = kl_loss
|
31 |
+
return z, log
|
32 |
+
|
33 |
+
|
34 |
+
class AbstractAutoencoder(torch.nn.Module):
|
35 |
+
"""
|
36 |
+
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
|
37 |
+
unCLIP models, etc. Hence, it is fairly general, and specific features
|
38 |
+
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
ema_decay: Union[None, float] = None,
|
44 |
+
monitor: Union[None, str] = None,
|
45 |
+
input_key: str = "jpg",
|
46 |
+
**kwargs,
|
47 |
+
):
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
self.input_key = input_key
|
51 |
+
self.use_ema = ema_decay is not None
|
52 |
+
if monitor is not None:
|
53 |
+
self.monitor = monitor
|
54 |
+
|
55 |
+
if self.use_ema:
|
56 |
+
self.model_ema = LitEma(self, decay=ema_decay)
|
57 |
+
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
58 |
+
|
59 |
+
def get_input(self, batch) -> Any:
|
60 |
+
raise NotImplementedError()
|
61 |
+
|
62 |
+
def on_train_batch_end(self, *args, **kwargs):
|
63 |
+
# for EMA computation
|
64 |
+
if self.use_ema:
|
65 |
+
self.model_ema(self)
|
66 |
+
|
67 |
+
@contextmanager
|
68 |
+
def ema_scope(self, context=None):
|
69 |
+
if self.use_ema:
|
70 |
+
self.model_ema.store(self.parameters())
|
71 |
+
self.model_ema.copy_to(self)
|
72 |
+
if context is not None:
|
73 |
+
logpy.info(f"{context}: Switched to EMA weights")
|
74 |
+
try:
|
75 |
+
yield None
|
76 |
+
finally:
|
77 |
+
if self.use_ema:
|
78 |
+
self.model_ema.restore(self.parameters())
|
79 |
+
if context is not None:
|
80 |
+
logpy.info(f"{context}: Restored training weights")
|
81 |
+
|
82 |
+
def encode(self, *args, **kwargs) -> torch.Tensor:
|
83 |
+
raise NotImplementedError("encode()-method of abstract base class called")
|
84 |
+
|
85 |
+
def decode(self, *args, **kwargs) -> torch.Tensor:
|
86 |
+
raise NotImplementedError("decode()-method of abstract base class called")
|
87 |
+
|
88 |
+
def instantiate_optimizer_from_config(self, params, lr, cfg):
|
89 |
+
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config")
|
90 |
+
return get_obj_from_str(cfg["target"])(
|
91 |
+
params, lr=lr, **cfg.get("params", dict())
|
92 |
+
)
|
93 |
+
|
94 |
+
def configure_optimizers(self) -> Any:
|
95 |
+
raise NotImplementedError()
|
96 |
+
|
97 |
+
|
98 |
+
class AutoencodingEngine(AbstractAutoencoder):
|
99 |
+
"""
|
100 |
+
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
|
101 |
+
(we also restore them explicitly as special cases for legacy reasons).
|
102 |
+
Regularizations such as KL or VQ are moved to the regularizer class.
|
103 |
+
"""
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
*args,
|
108 |
+
encoder_config: Dict,
|
109 |
+
decoder_config: Dict,
|
110 |
+
regularizer_config: Dict,
|
111 |
+
**kwargs,
|
112 |
+
):
|
113 |
+
super().__init__(*args, **kwargs)
|
114 |
+
|
115 |
+
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config)
|
116 |
+
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config)
|
117 |
+
self.regularization: AbstractRegularizer = instantiate_from_config(
|
118 |
+
regularizer_config
|
119 |
+
)
|
120 |
+
|
121 |
+
def get_last_layer(self):
|
122 |
+
return self.decoder.get_last_layer()
|
123 |
+
|
124 |
+
def encode(
|
125 |
+
self,
|
126 |
+
x: torch.Tensor,
|
127 |
+
return_reg_log: bool = False,
|
128 |
+
unregularized: bool = False,
|
129 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
|
130 |
+
z = self.encoder(x)
|
131 |
+
if unregularized:
|
132 |
+
return z, dict()
|
133 |
+
z, reg_log = self.regularization(z)
|
134 |
+
if return_reg_log:
|
135 |
+
return z, reg_log
|
136 |
+
return z
|
137 |
+
|
138 |
+
def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
|
139 |
+
x = self.decoder(z, **kwargs)
|
140 |
+
return x
|
141 |
+
|
142 |
+
def forward(
|
143 |
+
self, x: torch.Tensor, **additional_decode_kwargs
|
144 |
+
) -> Tuple[torch.Tensor, torch.Tensor, dict]:
|
145 |
+
z, reg_log = self.encode(x, return_reg_log=True)
|
146 |
+
dec = self.decode(z, **additional_decode_kwargs)
|
147 |
+
return z, dec, reg_log
|
148 |
+
|
149 |
+
|
150 |
+
class AutoencodingEngineLegacy(AutoencodingEngine):
|
151 |
+
def __init__(self, embed_dim: int, **kwargs):
|
152 |
+
self.max_batch_size = kwargs.pop("max_batch_size", None)
|
153 |
+
ddconfig = kwargs.pop("ddconfig")
|
154 |
+
super().__init__(
|
155 |
+
encoder_config={
|
156 |
+
"target": "ldm_patched.ldm.modules.diffusionmodules.model.Encoder",
|
157 |
+
"params": ddconfig,
|
158 |
+
},
|
159 |
+
decoder_config={
|
160 |
+
"target": "ldm_patched.ldm.modules.diffusionmodules.model.Decoder",
|
161 |
+
"params": ddconfig,
|
162 |
+
},
|
163 |
+
**kwargs,
|
164 |
+
)
|
165 |
+
self.quant_conv = ldm_patched.modules.ops.disable_weight_init.Conv2d(
|
166 |
+
(1 + ddconfig["double_z"]) * ddconfig["z_channels"],
|
167 |
+
(1 + ddconfig["double_z"]) * embed_dim,
|
168 |
+
1,
|
169 |
+
)
|
170 |
+
self.post_quant_conv = ldm_patched.modules.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
171 |
+
self.embed_dim = embed_dim
|
172 |
+
|
173 |
+
def get_autoencoder_params(self) -> list:
|
174 |
+
params = super().get_autoencoder_params()
|
175 |
+
return params
|
176 |
+
|
177 |
+
def encode(
|
178 |
+
self, x: torch.Tensor, return_reg_log: bool = False
|
179 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
|
180 |
+
if self.max_batch_size is None:
|
181 |
+
z = self.encoder(x)
|
182 |
+
z = self.quant_conv(z)
|
183 |
+
else:
|
184 |
+
N = x.shape[0]
|
185 |
+
bs = self.max_batch_size
|
186 |
+
n_batches = int(math.ceil(N / bs))
|
187 |
+
z = list()
|
188 |
+
for i_batch in range(n_batches):
|
189 |
+
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs])
|
190 |
+
z_batch = self.quant_conv(z_batch)
|
191 |
+
z.append(z_batch)
|
192 |
+
z = torch.cat(z, 0)
|
193 |
+
|
194 |
+
z, reg_log = self.regularization(z)
|
195 |
+
if return_reg_log:
|
196 |
+
return z, reg_log
|
197 |
+
return z
|
198 |
+
|
199 |
+
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
|
200 |
+
if self.max_batch_size is None:
|
201 |
+
dec = self.post_quant_conv(z)
|
202 |
+
dec = self.decoder(dec, **decoder_kwargs)
|
203 |
+
else:
|
204 |
+
N = z.shape[0]
|
205 |
+
bs = self.max_batch_size
|
206 |
+
n_batches = int(math.ceil(N / bs))
|
207 |
+
dec = list()
|
208 |
+
for i_batch in range(n_batches):
|
209 |
+
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs])
|
210 |
+
dec_batch = self.decoder(dec_batch, **decoder_kwargs)
|
211 |
+
dec.append(dec_batch)
|
212 |
+
dec = torch.cat(dec, 0)
|
213 |
+
|
214 |
+
return dec
|
215 |
+
|
216 |
+
|
217 |
+
class AutoencoderKL(AutoencodingEngineLegacy):
|
218 |
+
def __init__(self, **kwargs):
|
219 |
+
if "lossconfig" in kwargs:
|
220 |
+
kwargs["loss_config"] = kwargs.pop("lossconfig")
|
221 |
+
super().__init__(
|
222 |
+
regularizer_config={
|
223 |
+
"target": (
|
224 |
+
"ldm_patched.ldm.models.autoencoder.DiagonalGaussianRegularizer"
|
225 |
+
)
|
226 |
+
},
|
227 |
+
**kwargs,
|
228 |
+
)
|
ldm_patched/ldm/modules/attention.py
ADDED
@@ -0,0 +1,781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn, einsum
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from typing import Optional, Any
|
7 |
+
|
8 |
+
from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding
|
9 |
+
from .sub_quadratic_attention import efficient_dot_product_attention
|
10 |
+
|
11 |
+
from ldm_patched.modules import model_management
|
12 |
+
|
13 |
+
if model_management.xformers_enabled():
|
14 |
+
import xformers
|
15 |
+
import xformers.ops
|
16 |
+
|
17 |
+
from ldm_patched.modules.args_parser import args
|
18 |
+
import ldm_patched.modules.ops
|
19 |
+
ops = ldm_patched.modules.ops.disable_weight_init
|
20 |
+
|
21 |
+
# CrossAttn precision handling
|
22 |
+
if args.disable_attention_upcast:
|
23 |
+
print("disabling upcasting of attention")
|
24 |
+
_ATTN_PRECISION = "fp16"
|
25 |
+
else:
|
26 |
+
_ATTN_PRECISION = "fp32"
|
27 |
+
|
28 |
+
|
29 |
+
def exists(val):
|
30 |
+
return val is not None
|
31 |
+
|
32 |
+
|
33 |
+
def uniq(arr):
|
34 |
+
return{el: True for el in arr}.keys()
|
35 |
+
|
36 |
+
|
37 |
+
def default(val, d):
|
38 |
+
if exists(val):
|
39 |
+
return val
|
40 |
+
return d
|
41 |
+
|
42 |
+
|
43 |
+
def max_neg_value(t):
|
44 |
+
return -torch.finfo(t.dtype).max
|
45 |
+
|
46 |
+
|
47 |
+
def init_(tensor):
|
48 |
+
dim = tensor.shape[-1]
|
49 |
+
std = 1 / math.sqrt(dim)
|
50 |
+
tensor.uniform_(-std, std)
|
51 |
+
return tensor
|
52 |
+
|
53 |
+
|
54 |
+
# feedforward
|
55 |
+
class GEGLU(nn.Module):
|
56 |
+
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
|
57 |
+
super().__init__()
|
58 |
+
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
62 |
+
return x * F.gelu(gate)
|
63 |
+
|
64 |
+
|
65 |
+
class FeedForward(nn.Module):
|
66 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
|
67 |
+
super().__init__()
|
68 |
+
inner_dim = int(dim * mult)
|
69 |
+
dim_out = default(dim_out, dim)
|
70 |
+
project_in = nn.Sequential(
|
71 |
+
operations.Linear(dim, inner_dim, dtype=dtype, device=device),
|
72 |
+
nn.GELU()
|
73 |
+
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
|
74 |
+
|
75 |
+
self.net = nn.Sequential(
|
76 |
+
project_in,
|
77 |
+
nn.Dropout(dropout),
|
78 |
+
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
|
79 |
+
)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
return self.net(x)
|
83 |
+
|
84 |
+
def Normalize(in_channels, dtype=None, device=None):
|
85 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
86 |
+
|
87 |
+
def attention_basic(q, k, v, heads, mask=None):
|
88 |
+
b, _, dim_head = q.shape
|
89 |
+
dim_head //= heads
|
90 |
+
scale = dim_head ** -0.5
|
91 |
+
|
92 |
+
h = heads
|
93 |
+
q, k, v = map(
|
94 |
+
lambda t: t.unsqueeze(3)
|
95 |
+
.reshape(b, -1, heads, dim_head)
|
96 |
+
.permute(0, 2, 1, 3)
|
97 |
+
.reshape(b * heads, -1, dim_head)
|
98 |
+
.contiguous(),
|
99 |
+
(q, k, v),
|
100 |
+
)
|
101 |
+
|
102 |
+
# force cast to fp32 to avoid overflowing
|
103 |
+
if _ATTN_PRECISION =="fp32":
|
104 |
+
sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
|
105 |
+
else:
|
106 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * scale
|
107 |
+
|
108 |
+
del q, k
|
109 |
+
|
110 |
+
if exists(mask):
|
111 |
+
if mask.dtype == torch.bool:
|
112 |
+
mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
|
113 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
114 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
115 |
+
sim.masked_fill_(~mask, max_neg_value)
|
116 |
+
else:
|
117 |
+
sim += mask
|
118 |
+
|
119 |
+
# attention, what we cannot get enough of
|
120 |
+
sim = sim.softmax(dim=-1)
|
121 |
+
|
122 |
+
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
|
123 |
+
out = (
|
124 |
+
out.unsqueeze(0)
|
125 |
+
.reshape(b, heads, -1, dim_head)
|
126 |
+
.permute(0, 2, 1, 3)
|
127 |
+
.reshape(b, -1, heads * dim_head)
|
128 |
+
)
|
129 |
+
return out
|
130 |
+
|
131 |
+
|
132 |
+
def attention_sub_quad(query, key, value, heads, mask=None):
|
133 |
+
b, _, dim_head = query.shape
|
134 |
+
dim_head //= heads
|
135 |
+
|
136 |
+
scale = dim_head ** -0.5
|
137 |
+
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
|
138 |
+
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
|
139 |
+
|
140 |
+
key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
|
141 |
+
|
142 |
+
dtype = query.dtype
|
143 |
+
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
|
144 |
+
if upcast_attention:
|
145 |
+
bytes_per_token = torch.finfo(torch.float32).bits//8
|
146 |
+
else:
|
147 |
+
bytes_per_token = torch.finfo(query.dtype).bits//8
|
148 |
+
batch_x_heads, q_tokens, _ = query.shape
|
149 |
+
_, _, k_tokens = key.shape
|
150 |
+
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
|
151 |
+
|
152 |
+
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
|
153 |
+
|
154 |
+
kv_chunk_size_min = None
|
155 |
+
kv_chunk_size = None
|
156 |
+
query_chunk_size = None
|
157 |
+
|
158 |
+
for x in [4096, 2048, 1024, 512, 256]:
|
159 |
+
count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
|
160 |
+
if count >= k_tokens:
|
161 |
+
kv_chunk_size = k_tokens
|
162 |
+
query_chunk_size = x
|
163 |
+
break
|
164 |
+
|
165 |
+
if query_chunk_size is None:
|
166 |
+
query_chunk_size = 512
|
167 |
+
|
168 |
+
hidden_states = efficient_dot_product_attention(
|
169 |
+
query,
|
170 |
+
key,
|
171 |
+
value,
|
172 |
+
query_chunk_size=query_chunk_size,
|
173 |
+
kv_chunk_size=kv_chunk_size,
|
174 |
+
kv_chunk_size_min=kv_chunk_size_min,
|
175 |
+
use_checkpoint=False,
|
176 |
+
upcast_attention=upcast_attention,
|
177 |
+
mask=mask,
|
178 |
+
)
|
179 |
+
|
180 |
+
hidden_states = hidden_states.to(dtype)
|
181 |
+
|
182 |
+
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
|
183 |
+
return hidden_states
|
184 |
+
|
185 |
+
def attention_split(q, k, v, heads, mask=None):
|
186 |
+
b, _, dim_head = q.shape
|
187 |
+
dim_head //= heads
|
188 |
+
scale = dim_head ** -0.5
|
189 |
+
|
190 |
+
h = heads
|
191 |
+
q, k, v = map(
|
192 |
+
lambda t: t.unsqueeze(3)
|
193 |
+
.reshape(b, -1, heads, dim_head)
|
194 |
+
.permute(0, 2, 1, 3)
|
195 |
+
.reshape(b * heads, -1, dim_head)
|
196 |
+
.contiguous(),
|
197 |
+
(q, k, v),
|
198 |
+
)
|
199 |
+
|
200 |
+
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
201 |
+
|
202 |
+
mem_free_total = model_management.get_free_memory(q.device)
|
203 |
+
|
204 |
+
if _ATTN_PRECISION =="fp32":
|
205 |
+
element_size = 4
|
206 |
+
else:
|
207 |
+
element_size = q.element_size()
|
208 |
+
|
209 |
+
gb = 1024 ** 3
|
210 |
+
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
|
211 |
+
modifier = 3
|
212 |
+
mem_required = tensor_size * modifier
|
213 |
+
steps = 1
|
214 |
+
|
215 |
+
|
216 |
+
if mem_required > mem_free_total:
|
217 |
+
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
218 |
+
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
|
219 |
+
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
|
220 |
+
|
221 |
+
if steps > 64:
|
222 |
+
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
|
223 |
+
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
224 |
+
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
|
225 |
+
|
226 |
+
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
|
227 |
+
first_op_done = False
|
228 |
+
cleared_cache = False
|
229 |
+
while True:
|
230 |
+
try:
|
231 |
+
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
232 |
+
for i in range(0, q.shape[1], slice_size):
|
233 |
+
end = i + slice_size
|
234 |
+
if _ATTN_PRECISION =="fp32":
|
235 |
+
with torch.autocast(enabled=False, device_type = 'cuda'):
|
236 |
+
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
|
237 |
+
else:
|
238 |
+
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
|
239 |
+
|
240 |
+
if mask is not None:
|
241 |
+
if len(mask.shape) == 2:
|
242 |
+
s1 += mask[i:end]
|
243 |
+
else:
|
244 |
+
s1 += mask[:, i:end]
|
245 |
+
|
246 |
+
s2 = s1.softmax(dim=-1).to(v.dtype)
|
247 |
+
del s1
|
248 |
+
first_op_done = True
|
249 |
+
|
250 |
+
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
|
251 |
+
del s2
|
252 |
+
break
|
253 |
+
except model_management.OOM_EXCEPTION as e:
|
254 |
+
if first_op_done == False:
|
255 |
+
model_management.soft_empty_cache(True)
|
256 |
+
if cleared_cache == False:
|
257 |
+
cleared_cache = True
|
258 |
+
print("out of memory error, emptying cache and trying again")
|
259 |
+
continue
|
260 |
+
steps *= 2
|
261 |
+
if steps > 64:
|
262 |
+
raise e
|
263 |
+
print("out of memory error, increasing steps and trying again", steps)
|
264 |
+
else:
|
265 |
+
raise e
|
266 |
+
|
267 |
+
del q, k, v
|
268 |
+
|
269 |
+
r1 = (
|
270 |
+
r1.unsqueeze(0)
|
271 |
+
.reshape(b, heads, -1, dim_head)
|
272 |
+
.permute(0, 2, 1, 3)
|
273 |
+
.reshape(b, -1, heads * dim_head)
|
274 |
+
)
|
275 |
+
return r1
|
276 |
+
|
277 |
+
BROKEN_XFORMERS = False
|
278 |
+
try:
|
279 |
+
x_vers = xformers.__version__
|
280 |
+
#I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error)
|
281 |
+
BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23")
|
282 |
+
except:
|
283 |
+
pass
|
284 |
+
|
285 |
+
def attention_xformers(q, k, v, heads, mask=None):
|
286 |
+
b, _, dim_head = q.shape
|
287 |
+
dim_head //= heads
|
288 |
+
if BROKEN_XFORMERS:
|
289 |
+
if b * heads > 65535:
|
290 |
+
return attention_pytorch(q, k, v, heads, mask)
|
291 |
+
|
292 |
+
q, k, v = map(
|
293 |
+
lambda t: t.unsqueeze(3)
|
294 |
+
.reshape(b, -1, heads, dim_head)
|
295 |
+
.permute(0, 2, 1, 3)
|
296 |
+
.reshape(b * heads, -1, dim_head)
|
297 |
+
.contiguous(),
|
298 |
+
(q, k, v),
|
299 |
+
)
|
300 |
+
|
301 |
+
if mask is not None:
|
302 |
+
pad = 8 - q.shape[1] % 8
|
303 |
+
mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
|
304 |
+
mask_out[:, :, :mask.shape[-1]] = mask
|
305 |
+
mask = mask_out[:, :, :mask.shape[-1]]
|
306 |
+
|
307 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
|
308 |
+
|
309 |
+
out = (
|
310 |
+
out.unsqueeze(0)
|
311 |
+
.reshape(b, heads, -1, dim_head)
|
312 |
+
.permute(0, 2, 1, 3)
|
313 |
+
.reshape(b, -1, heads * dim_head)
|
314 |
+
)
|
315 |
+
return out
|
316 |
+
|
317 |
+
def attention_pytorch(q, k, v, heads, mask=None):
|
318 |
+
b, _, dim_head = q.shape
|
319 |
+
dim_head //= heads
|
320 |
+
q, k, v = map(
|
321 |
+
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
|
322 |
+
(q, k, v),
|
323 |
+
)
|
324 |
+
|
325 |
+
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
326 |
+
out = (
|
327 |
+
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
328 |
+
)
|
329 |
+
return out
|
330 |
+
|
331 |
+
|
332 |
+
optimized_attention = attention_basic
|
333 |
+
|
334 |
+
if model_management.xformers_enabled():
|
335 |
+
print("Using xformers cross attention")
|
336 |
+
optimized_attention = attention_xformers
|
337 |
+
elif model_management.pytorch_attention_enabled():
|
338 |
+
print("Using pytorch cross attention")
|
339 |
+
optimized_attention = attention_pytorch
|
340 |
+
else:
|
341 |
+
if args.attention_split:
|
342 |
+
print("Using split optimization for cross attention")
|
343 |
+
optimized_attention = attention_split
|
344 |
+
else:
|
345 |
+
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --attention-split")
|
346 |
+
optimized_attention = attention_sub_quad
|
347 |
+
|
348 |
+
optimized_attention_masked = optimized_attention
|
349 |
+
|
350 |
+
def optimized_attention_for_device(device, mask=False, small_input=False):
|
351 |
+
if small_input:
|
352 |
+
if model_management.pytorch_attention_enabled():
|
353 |
+
return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
|
354 |
+
else:
|
355 |
+
return attention_basic
|
356 |
+
|
357 |
+
if device == torch.device("cpu"):
|
358 |
+
return attention_sub_quad
|
359 |
+
|
360 |
+
if mask:
|
361 |
+
return optimized_attention_masked
|
362 |
+
|
363 |
+
return optimized_attention
|
364 |
+
|
365 |
+
|
366 |
+
class CrossAttention(nn.Module):
|
367 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=ops):
|
368 |
+
super().__init__()
|
369 |
+
inner_dim = dim_head * heads
|
370 |
+
context_dim = default(context_dim, query_dim)
|
371 |
+
|
372 |
+
self.heads = heads
|
373 |
+
self.dim_head = dim_head
|
374 |
+
|
375 |
+
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
376 |
+
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
377 |
+
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
378 |
+
|
379 |
+
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
380 |
+
|
381 |
+
def forward(self, x, context=None, value=None, mask=None):
|
382 |
+
q = self.to_q(x)
|
383 |
+
context = default(context, x)
|
384 |
+
k = self.to_k(context)
|
385 |
+
if value is not None:
|
386 |
+
v = self.to_v(value)
|
387 |
+
del value
|
388 |
+
else:
|
389 |
+
v = self.to_v(context)
|
390 |
+
|
391 |
+
if mask is None:
|
392 |
+
out = optimized_attention(q, k, v, self.heads)
|
393 |
+
else:
|
394 |
+
out = optimized_attention_masked(q, k, v, self.heads, mask)
|
395 |
+
return self.to_out(out)
|
396 |
+
|
397 |
+
|
398 |
+
class BasicTransformerBlock(nn.Module):
|
399 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
|
400 |
+
disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=ops):
|
401 |
+
super().__init__()
|
402 |
+
|
403 |
+
self.ff_in = ff_in or inner_dim is not None
|
404 |
+
if inner_dim is None:
|
405 |
+
inner_dim = dim
|
406 |
+
|
407 |
+
self.is_res = inner_dim == dim
|
408 |
+
|
409 |
+
if self.ff_in:
|
410 |
+
self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
|
411 |
+
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
|
412 |
+
|
413 |
+
self.disable_self_attn = disable_self_attn
|
414 |
+
self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
415 |
+
context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations) # is a self-attention if not self.disable_self_attn
|
416 |
+
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
|
417 |
+
|
418 |
+
if disable_temporal_crossattention:
|
419 |
+
if switch_temporal_ca_to_sa:
|
420 |
+
raise ValueError
|
421 |
+
else:
|
422 |
+
self.attn2 = None
|
423 |
+
else:
|
424 |
+
context_dim_attn2 = None
|
425 |
+
if not switch_temporal_ca_to_sa:
|
426 |
+
context_dim_attn2 = context_dim
|
427 |
+
|
428 |
+
self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
|
429 |
+
heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations) # is self-attn if context is none
|
430 |
+
self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
|
431 |
+
|
432 |
+
self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
|
433 |
+
self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
|
434 |
+
self.checkpoint = checkpoint
|
435 |
+
self.n_heads = n_heads
|
436 |
+
self.d_head = d_head
|
437 |
+
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
|
438 |
+
|
439 |
+
def forward(self, x, context=None, transformer_options={}):
|
440 |
+
return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
|
441 |
+
|
442 |
+
def _forward(self, x, context=None, transformer_options={}):
|
443 |
+
extra_options = {}
|
444 |
+
block = transformer_options.get("block", None)
|
445 |
+
block_index = transformer_options.get("block_index", 0)
|
446 |
+
transformer_patches = {}
|
447 |
+
transformer_patches_replace = {}
|
448 |
+
|
449 |
+
for k in transformer_options:
|
450 |
+
if k == "patches":
|
451 |
+
transformer_patches = transformer_options[k]
|
452 |
+
elif k == "patches_replace":
|
453 |
+
transformer_patches_replace = transformer_options[k]
|
454 |
+
else:
|
455 |
+
extra_options[k] = transformer_options[k]
|
456 |
+
|
457 |
+
extra_options["n_heads"] = self.n_heads
|
458 |
+
extra_options["dim_head"] = self.d_head
|
459 |
+
|
460 |
+
if self.ff_in:
|
461 |
+
x_skip = x
|
462 |
+
x = self.ff_in(self.norm_in(x))
|
463 |
+
if self.is_res:
|
464 |
+
x += x_skip
|
465 |
+
|
466 |
+
n = self.norm1(x)
|
467 |
+
if self.disable_self_attn:
|
468 |
+
context_attn1 = context
|
469 |
+
else:
|
470 |
+
context_attn1 = None
|
471 |
+
value_attn1 = None
|
472 |
+
|
473 |
+
if "attn1_patch" in transformer_patches:
|
474 |
+
patch = transformer_patches["attn1_patch"]
|
475 |
+
if context_attn1 is None:
|
476 |
+
context_attn1 = n
|
477 |
+
value_attn1 = context_attn1
|
478 |
+
for p in patch:
|
479 |
+
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
|
480 |
+
|
481 |
+
if block is not None:
|
482 |
+
transformer_block = (block[0], block[1], block_index)
|
483 |
+
else:
|
484 |
+
transformer_block = None
|
485 |
+
attn1_replace_patch = transformer_patches_replace.get("attn1", {})
|
486 |
+
block_attn1 = transformer_block
|
487 |
+
if block_attn1 not in attn1_replace_patch:
|
488 |
+
block_attn1 = block
|
489 |
+
|
490 |
+
if block_attn1 in attn1_replace_patch:
|
491 |
+
if context_attn1 is None:
|
492 |
+
context_attn1 = n
|
493 |
+
value_attn1 = n
|
494 |
+
n = self.attn1.to_q(n)
|
495 |
+
context_attn1 = self.attn1.to_k(context_attn1)
|
496 |
+
value_attn1 = self.attn1.to_v(value_attn1)
|
497 |
+
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
|
498 |
+
n = self.attn1.to_out(n)
|
499 |
+
else:
|
500 |
+
n = self.attn1(n, context=context_attn1, value=value_attn1)
|
501 |
+
|
502 |
+
if "attn1_output_patch" in transformer_patches:
|
503 |
+
patch = transformer_patches["attn1_output_patch"]
|
504 |
+
for p in patch:
|
505 |
+
n = p(n, extra_options)
|
506 |
+
|
507 |
+
x += n
|
508 |
+
if "middle_patch" in transformer_patches:
|
509 |
+
patch = transformer_patches["middle_patch"]
|
510 |
+
for p in patch:
|
511 |
+
x = p(x, extra_options)
|
512 |
+
|
513 |
+
if self.attn2 is not None:
|
514 |
+
n = self.norm2(x)
|
515 |
+
if self.switch_temporal_ca_to_sa:
|
516 |
+
context_attn2 = n
|
517 |
+
else:
|
518 |
+
context_attn2 = context
|
519 |
+
value_attn2 = None
|
520 |
+
if "attn2_patch" in transformer_patches:
|
521 |
+
patch = transformer_patches["attn2_patch"]
|
522 |
+
value_attn2 = context_attn2
|
523 |
+
for p in patch:
|
524 |
+
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
|
525 |
+
|
526 |
+
attn2_replace_patch = transformer_patches_replace.get("attn2", {})
|
527 |
+
block_attn2 = transformer_block
|
528 |
+
if block_attn2 not in attn2_replace_patch:
|
529 |
+
block_attn2 = block
|
530 |
+
|
531 |
+
if block_attn2 in attn2_replace_patch:
|
532 |
+
if value_attn2 is None:
|
533 |
+
value_attn2 = context_attn2
|
534 |
+
n = self.attn2.to_q(n)
|
535 |
+
context_attn2 = self.attn2.to_k(context_attn2)
|
536 |
+
value_attn2 = self.attn2.to_v(value_attn2)
|
537 |
+
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
|
538 |
+
n = self.attn2.to_out(n)
|
539 |
+
else:
|
540 |
+
n = self.attn2(n, context=context_attn2, value=value_attn2)
|
541 |
+
|
542 |
+
if "attn2_output_patch" in transformer_patches:
|
543 |
+
patch = transformer_patches["attn2_output_patch"]
|
544 |
+
for p in patch:
|
545 |
+
n = p(n, extra_options)
|
546 |
+
|
547 |
+
x += n
|
548 |
+
if self.is_res:
|
549 |
+
x_skip = x
|
550 |
+
x = self.ff(self.norm3(x))
|
551 |
+
if self.is_res:
|
552 |
+
x += x_skip
|
553 |
+
|
554 |
+
return x
|
555 |
+
|
556 |
+
|
557 |
+
class SpatialTransformer(nn.Module):
|
558 |
+
"""
|
559 |
+
Transformer block for image-like data.
|
560 |
+
First, project the input (aka embedding)
|
561 |
+
and reshape to b, t, d.
|
562 |
+
Then apply standard transformer action.
|
563 |
+
Finally, reshape to image
|
564 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
565 |
+
"""
|
566 |
+
def __init__(self, in_channels, n_heads, d_head,
|
567 |
+
depth=1, dropout=0., context_dim=None,
|
568 |
+
disable_self_attn=False, use_linear=False,
|
569 |
+
use_checkpoint=True, dtype=None, device=None, operations=ops):
|
570 |
+
super().__init__()
|
571 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
572 |
+
context_dim = [context_dim] * depth
|
573 |
+
self.in_channels = in_channels
|
574 |
+
inner_dim = n_heads * d_head
|
575 |
+
self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
576 |
+
if not use_linear:
|
577 |
+
self.proj_in = operations.Conv2d(in_channels,
|
578 |
+
inner_dim,
|
579 |
+
kernel_size=1,
|
580 |
+
stride=1,
|
581 |
+
padding=0, dtype=dtype, device=device)
|
582 |
+
else:
|
583 |
+
self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
584 |
+
|
585 |
+
self.transformer_blocks = nn.ModuleList(
|
586 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
587 |
+
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
|
588 |
+
for d in range(depth)]
|
589 |
+
)
|
590 |
+
if not use_linear:
|
591 |
+
self.proj_out = operations.Conv2d(inner_dim,in_channels,
|
592 |
+
kernel_size=1,
|
593 |
+
stride=1,
|
594 |
+
padding=0, dtype=dtype, device=device)
|
595 |
+
else:
|
596 |
+
self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
|
597 |
+
self.use_linear = use_linear
|
598 |
+
|
599 |
+
def forward(self, x, context=None, transformer_options={}):
|
600 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
601 |
+
if not isinstance(context, list):
|
602 |
+
context = [context] * len(self.transformer_blocks)
|
603 |
+
b, c, h, w = x.shape
|
604 |
+
x_in = x
|
605 |
+
x = self.norm(x)
|
606 |
+
if not self.use_linear:
|
607 |
+
x = self.proj_in(x)
|
608 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
609 |
+
if self.use_linear:
|
610 |
+
x = self.proj_in(x)
|
611 |
+
for i, block in enumerate(self.transformer_blocks):
|
612 |
+
transformer_options["block_index"] = i
|
613 |
+
x = block(x, context=context[i], transformer_options=transformer_options)
|
614 |
+
if self.use_linear:
|
615 |
+
x = self.proj_out(x)
|
616 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
617 |
+
if not self.use_linear:
|
618 |
+
x = self.proj_out(x)
|
619 |
+
return x + x_in
|
620 |
+
|
621 |
+
|
622 |
+
class SpatialVideoTransformer(SpatialTransformer):
|
623 |
+
def __init__(
|
624 |
+
self,
|
625 |
+
in_channels,
|
626 |
+
n_heads,
|
627 |
+
d_head,
|
628 |
+
depth=1,
|
629 |
+
dropout=0.0,
|
630 |
+
use_linear=False,
|
631 |
+
context_dim=None,
|
632 |
+
use_spatial_context=False,
|
633 |
+
timesteps=None,
|
634 |
+
merge_strategy: str = "fixed",
|
635 |
+
merge_factor: float = 0.5,
|
636 |
+
time_context_dim=None,
|
637 |
+
ff_in=False,
|
638 |
+
checkpoint=False,
|
639 |
+
time_depth=1,
|
640 |
+
disable_self_attn=False,
|
641 |
+
disable_temporal_crossattention=False,
|
642 |
+
max_time_embed_period: int = 10000,
|
643 |
+
dtype=None, device=None, operations=ops
|
644 |
+
):
|
645 |
+
super().__init__(
|
646 |
+
in_channels,
|
647 |
+
n_heads,
|
648 |
+
d_head,
|
649 |
+
depth=depth,
|
650 |
+
dropout=dropout,
|
651 |
+
use_checkpoint=checkpoint,
|
652 |
+
context_dim=context_dim,
|
653 |
+
use_linear=use_linear,
|
654 |
+
disable_self_attn=disable_self_attn,
|
655 |
+
dtype=dtype, device=device, operations=operations
|
656 |
+
)
|
657 |
+
self.time_depth = time_depth
|
658 |
+
self.depth = depth
|
659 |
+
self.max_time_embed_period = max_time_embed_period
|
660 |
+
|
661 |
+
time_mix_d_head = d_head
|
662 |
+
n_time_mix_heads = n_heads
|
663 |
+
|
664 |
+
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
|
665 |
+
|
666 |
+
inner_dim = n_heads * d_head
|
667 |
+
if use_spatial_context:
|
668 |
+
time_context_dim = context_dim
|
669 |
+
|
670 |
+
self.time_stack = nn.ModuleList(
|
671 |
+
[
|
672 |
+
BasicTransformerBlock(
|
673 |
+
inner_dim,
|
674 |
+
n_time_mix_heads,
|
675 |
+
time_mix_d_head,
|
676 |
+
dropout=dropout,
|
677 |
+
context_dim=time_context_dim,
|
678 |
+
# timesteps=timesteps,
|
679 |
+
checkpoint=checkpoint,
|
680 |
+
ff_in=ff_in,
|
681 |
+
inner_dim=time_mix_inner_dim,
|
682 |
+
disable_self_attn=disable_self_attn,
|
683 |
+
disable_temporal_crossattention=disable_temporal_crossattention,
|
684 |
+
dtype=dtype, device=device, operations=operations
|
685 |
+
)
|
686 |
+
for _ in range(self.depth)
|
687 |
+
]
|
688 |
+
)
|
689 |
+
|
690 |
+
assert len(self.time_stack) == len(self.transformer_blocks)
|
691 |
+
|
692 |
+
self.use_spatial_context = use_spatial_context
|
693 |
+
self.in_channels = in_channels
|
694 |
+
|
695 |
+
time_embed_dim = self.in_channels * 4
|
696 |
+
self.time_pos_embed = nn.Sequential(
|
697 |
+
operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
|
698 |
+
nn.SiLU(),
|
699 |
+
operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
|
700 |
+
)
|
701 |
+
|
702 |
+
self.time_mixer = AlphaBlender(
|
703 |
+
alpha=merge_factor, merge_strategy=merge_strategy
|
704 |
+
)
|
705 |
+
|
706 |
+
def forward(
|
707 |
+
self,
|
708 |
+
x: torch.Tensor,
|
709 |
+
context: Optional[torch.Tensor] = None,
|
710 |
+
time_context: Optional[torch.Tensor] = None,
|
711 |
+
timesteps: Optional[int] = None,
|
712 |
+
image_only_indicator: Optional[torch.Tensor] = None,
|
713 |
+
transformer_options={}
|
714 |
+
) -> torch.Tensor:
|
715 |
+
_, _, h, w = x.shape
|
716 |
+
x_in = x
|
717 |
+
spatial_context = None
|
718 |
+
if exists(context):
|
719 |
+
spatial_context = context
|
720 |
+
|
721 |
+
if self.use_spatial_context:
|
722 |
+
assert (
|
723 |
+
context.ndim == 3
|
724 |
+
), f"n dims of spatial context should be 3 but are {context.ndim}"
|
725 |
+
|
726 |
+
if time_context is None:
|
727 |
+
time_context = context
|
728 |
+
time_context_first_timestep = time_context[::timesteps]
|
729 |
+
time_context = repeat(
|
730 |
+
time_context_first_timestep, "b ... -> (b n) ...", n=h * w
|
731 |
+
)
|
732 |
+
elif time_context is not None and not self.use_spatial_context:
|
733 |
+
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
|
734 |
+
if time_context.ndim == 2:
|
735 |
+
time_context = rearrange(time_context, "b c -> b 1 c")
|
736 |
+
|
737 |
+
x = self.norm(x)
|
738 |
+
if not self.use_linear:
|
739 |
+
x = self.proj_in(x)
|
740 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
741 |
+
if self.use_linear:
|
742 |
+
x = self.proj_in(x)
|
743 |
+
|
744 |
+
num_frames = torch.arange(timesteps, device=x.device)
|
745 |
+
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
746 |
+
num_frames = rearrange(num_frames, "b t -> (b t)")
|
747 |
+
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
|
748 |
+
emb = self.time_pos_embed(t_emb)
|
749 |
+
emb = emb[:, None, :]
|
750 |
+
|
751 |
+
for it_, (block, mix_block) in enumerate(
|
752 |
+
zip(self.transformer_blocks, self.time_stack)
|
753 |
+
):
|
754 |
+
transformer_options["block_index"] = it_
|
755 |
+
x = block(
|
756 |
+
x,
|
757 |
+
context=spatial_context,
|
758 |
+
transformer_options=transformer_options,
|
759 |
+
)
|
760 |
+
|
761 |
+
x_mix = x
|
762 |
+
x_mix = x_mix + emb
|
763 |
+
|
764 |
+
B, S, C = x_mix.shape
|
765 |
+
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
|
766 |
+
x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
|
767 |
+
x_mix = rearrange(
|
768 |
+
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
|
769 |
+
)
|
770 |
+
|
771 |
+
x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)
|
772 |
+
|
773 |
+
if self.use_linear:
|
774 |
+
x = self.proj_out(x)
|
775 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
776 |
+
if not self.use_linear:
|
777 |
+
x = self.proj_out(x)
|
778 |
+
out = x + x_in
|
779 |
+
return out
|
780 |
+
|
781 |
+
|
ldm_patched/ldm/modules/diffusionmodules/__init__.py
ADDED
File without changes
|
ldm_patched/ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
from typing import Optional, Any
|
8 |
+
|
9 |
+
from ldm_patched.modules import model_management
|
10 |
+
import ldm_patched.modules.ops
|
11 |
+
ops = ldm_patched.modules.ops.disable_weight_init
|
12 |
+
|
13 |
+
if model_management.xformers_enabled_vae():
|
14 |
+
import xformers
|
15 |
+
import xformers.ops
|
16 |
+
|
17 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
18 |
+
"""
|
19 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
20 |
+
From Fairseq.
|
21 |
+
Build sinusoidal embeddings.
|
22 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
23 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
24 |
+
"""
|
25 |
+
assert len(timesteps.shape) == 1
|
26 |
+
|
27 |
+
half_dim = embedding_dim // 2
|
28 |
+
emb = math.log(10000) / (half_dim - 1)
|
29 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
30 |
+
emb = emb.to(device=timesteps.device)
|
31 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
32 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
33 |
+
if embedding_dim % 2 == 1: # zero pad
|
34 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
35 |
+
return emb
|
36 |
+
|
37 |
+
|
38 |
+
def nonlinearity(x):
|
39 |
+
# swish
|
40 |
+
return x*torch.sigmoid(x)
|
41 |
+
|
42 |
+
|
43 |
+
def Normalize(in_channels, num_groups=32):
|
44 |
+
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
45 |
+
|
46 |
+
|
47 |
+
class Upsample(nn.Module):
|
48 |
+
def __init__(self, in_channels, with_conv):
|
49 |
+
super().__init__()
|
50 |
+
self.with_conv = with_conv
|
51 |
+
if self.with_conv:
|
52 |
+
self.conv = ops.Conv2d(in_channels,
|
53 |
+
in_channels,
|
54 |
+
kernel_size=3,
|
55 |
+
stride=1,
|
56 |
+
padding=1)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
try:
|
60 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
61 |
+
except: #operation not implemented for bf16
|
62 |
+
b, c, h, w = x.shape
|
63 |
+
out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
|
64 |
+
split = 8
|
65 |
+
l = out.shape[1] // split
|
66 |
+
for i in range(0, out.shape[1], l):
|
67 |
+
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
|
68 |
+
del x
|
69 |
+
x = out
|
70 |
+
|
71 |
+
if self.with_conv:
|
72 |
+
x = self.conv(x)
|
73 |
+
return x
|
74 |
+
|
75 |
+
|
76 |
+
class Downsample(nn.Module):
|
77 |
+
def __init__(self, in_channels, with_conv):
|
78 |
+
super().__init__()
|
79 |
+
self.with_conv = with_conv
|
80 |
+
if self.with_conv:
|
81 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
82 |
+
self.conv = ops.Conv2d(in_channels,
|
83 |
+
in_channels,
|
84 |
+
kernel_size=3,
|
85 |
+
stride=2,
|
86 |
+
padding=0)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
if self.with_conv:
|
90 |
+
pad = (0,1,0,1)
|
91 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
92 |
+
x = self.conv(x)
|
93 |
+
else:
|
94 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class ResnetBlock(nn.Module):
|
99 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
100 |
+
dropout, temb_channels=512):
|
101 |
+
super().__init__()
|
102 |
+
self.in_channels = in_channels
|
103 |
+
out_channels = in_channels if out_channels is None else out_channels
|
104 |
+
self.out_channels = out_channels
|
105 |
+
self.use_conv_shortcut = conv_shortcut
|
106 |
+
|
107 |
+
self.swish = torch.nn.SiLU(inplace=True)
|
108 |
+
self.norm1 = Normalize(in_channels)
|
109 |
+
self.conv1 = ops.Conv2d(in_channels,
|
110 |
+
out_channels,
|
111 |
+
kernel_size=3,
|
112 |
+
stride=1,
|
113 |
+
padding=1)
|
114 |
+
if temb_channels > 0:
|
115 |
+
self.temb_proj = ops.Linear(temb_channels,
|
116 |
+
out_channels)
|
117 |
+
self.norm2 = Normalize(out_channels)
|
118 |
+
self.dropout = torch.nn.Dropout(dropout, inplace=True)
|
119 |
+
self.conv2 = ops.Conv2d(out_channels,
|
120 |
+
out_channels,
|
121 |
+
kernel_size=3,
|
122 |
+
stride=1,
|
123 |
+
padding=1)
|
124 |
+
if self.in_channels != self.out_channels:
|
125 |
+
if self.use_conv_shortcut:
|
126 |
+
self.conv_shortcut = ops.Conv2d(in_channels,
|
127 |
+
out_channels,
|
128 |
+
kernel_size=3,
|
129 |
+
stride=1,
|
130 |
+
padding=1)
|
131 |
+
else:
|
132 |
+
self.nin_shortcut = ops.Conv2d(in_channels,
|
133 |
+
out_channels,
|
134 |
+
kernel_size=1,
|
135 |
+
stride=1,
|
136 |
+
padding=0)
|
137 |
+
|
138 |
+
def forward(self, x, temb):
|
139 |
+
h = x
|
140 |
+
h = self.norm1(h)
|
141 |
+
h = self.swish(h)
|
142 |
+
h = self.conv1(h)
|
143 |
+
|
144 |
+
if temb is not None:
|
145 |
+
h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
|
146 |
+
|
147 |
+
h = self.norm2(h)
|
148 |
+
h = self.swish(h)
|
149 |
+
h = self.dropout(h)
|
150 |
+
h = self.conv2(h)
|
151 |
+
|
152 |
+
if self.in_channels != self.out_channels:
|
153 |
+
if self.use_conv_shortcut:
|
154 |
+
x = self.conv_shortcut(x)
|
155 |
+
else:
|
156 |
+
x = self.nin_shortcut(x)
|
157 |
+
|
158 |
+
return x+h
|
159 |
+
|
160 |
+
def slice_attention(q, k, v):
|
161 |
+
r1 = torch.zeros_like(k, device=q.device)
|
162 |
+
scale = (int(q.shape[-1])**(-0.5))
|
163 |
+
|
164 |
+
mem_free_total = model_management.get_free_memory(q.device)
|
165 |
+
|
166 |
+
gb = 1024 ** 3
|
167 |
+
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
168 |
+
modifier = 3 if q.element_size() == 2 else 2.5
|
169 |
+
mem_required = tensor_size * modifier
|
170 |
+
steps = 1
|
171 |
+
|
172 |
+
if mem_required > mem_free_total:
|
173 |
+
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
174 |
+
|
175 |
+
while True:
|
176 |
+
try:
|
177 |
+
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
178 |
+
for i in range(0, q.shape[1], slice_size):
|
179 |
+
end = i + slice_size
|
180 |
+
s1 = torch.bmm(q[:, i:end], k) * scale
|
181 |
+
|
182 |
+
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
|
183 |
+
del s1
|
184 |
+
|
185 |
+
r1[:, :, i:end] = torch.bmm(v, s2)
|
186 |
+
del s2
|
187 |
+
break
|
188 |
+
except model_management.OOM_EXCEPTION as e:
|
189 |
+
model_management.soft_empty_cache(True)
|
190 |
+
steps *= 2
|
191 |
+
if steps > 128:
|
192 |
+
raise e
|
193 |
+
print("out of memory error, increasing steps and trying again", steps)
|
194 |
+
|
195 |
+
return r1
|
196 |
+
|
197 |
+
def normal_attention(q, k, v):
|
198 |
+
# compute attention
|
199 |
+
b,c,h,w = q.shape
|
200 |
+
|
201 |
+
q = q.reshape(b,c,h*w)
|
202 |
+
q = q.permute(0,2,1) # b,hw,c
|
203 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
204 |
+
v = v.reshape(b,c,h*w)
|
205 |
+
|
206 |
+
r1 = slice_attention(q, k, v)
|
207 |
+
h_ = r1.reshape(b,c,h,w)
|
208 |
+
del r1
|
209 |
+
return h_
|
210 |
+
|
211 |
+
def xformers_attention(q, k, v):
|
212 |
+
# compute attention
|
213 |
+
B, C, H, W = q.shape
|
214 |
+
q, k, v = map(
|
215 |
+
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
|
216 |
+
(q, k, v),
|
217 |
+
)
|
218 |
+
|
219 |
+
try:
|
220 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
221 |
+
out = out.transpose(1, 2).reshape(B, C, H, W)
|
222 |
+
except NotImplementedError as e:
|
223 |
+
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
224 |
+
return out
|
225 |
+
|
226 |
+
def pytorch_attention(q, k, v):
|
227 |
+
# compute attention
|
228 |
+
B, C, H, W = q.shape
|
229 |
+
q, k, v = map(
|
230 |
+
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
|
231 |
+
(q, k, v),
|
232 |
+
)
|
233 |
+
|
234 |
+
try:
|
235 |
+
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
236 |
+
out = out.transpose(2, 3).reshape(B, C, H, W)
|
237 |
+
except model_management.OOM_EXCEPTION as e:
|
238 |
+
print("scaled_dot_product_attention OOMed: switched to slice attention")
|
239 |
+
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
240 |
+
return out
|
241 |
+
|
242 |
+
|
243 |
+
class AttnBlock(nn.Module):
|
244 |
+
def __init__(self, in_channels):
|
245 |
+
super().__init__()
|
246 |
+
self.in_channels = in_channels
|
247 |
+
|
248 |
+
self.norm = Normalize(in_channels)
|
249 |
+
self.q = ops.Conv2d(in_channels,
|
250 |
+
in_channels,
|
251 |
+
kernel_size=1,
|
252 |
+
stride=1,
|
253 |
+
padding=0)
|
254 |
+
self.k = ops.Conv2d(in_channels,
|
255 |
+
in_channels,
|
256 |
+
kernel_size=1,
|
257 |
+
stride=1,
|
258 |
+
padding=0)
|
259 |
+
self.v = ops.Conv2d(in_channels,
|
260 |
+
in_channels,
|
261 |
+
kernel_size=1,
|
262 |
+
stride=1,
|
263 |
+
padding=0)
|
264 |
+
self.proj_out = ops.Conv2d(in_channels,
|
265 |
+
in_channels,
|
266 |
+
kernel_size=1,
|
267 |
+
stride=1,
|
268 |
+
padding=0)
|
269 |
+
|
270 |
+
if model_management.xformers_enabled_vae():
|
271 |
+
print("Using xformers attention in VAE")
|
272 |
+
self.optimized_attention = xformers_attention
|
273 |
+
elif model_management.pytorch_attention_enabled():
|
274 |
+
print("Using pytorch attention in VAE")
|
275 |
+
self.optimized_attention = pytorch_attention
|
276 |
+
else:
|
277 |
+
print("Using split attention in VAE")
|
278 |
+
self.optimized_attention = normal_attention
|
279 |
+
|
280 |
+
def forward(self, x):
|
281 |
+
h_ = x
|
282 |
+
h_ = self.norm(h_)
|
283 |
+
q = self.q(h_)
|
284 |
+
k = self.k(h_)
|
285 |
+
v = self.v(h_)
|
286 |
+
|
287 |
+
h_ = self.optimized_attention(q, k, v)
|
288 |
+
|
289 |
+
h_ = self.proj_out(h_)
|
290 |
+
|
291 |
+
return x+h_
|
292 |
+
|
293 |
+
|
294 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
295 |
+
return AttnBlock(in_channels)
|
296 |
+
|
297 |
+
|
298 |
+
class Model(nn.Module):
|
299 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
300 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
301 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
302 |
+
super().__init__()
|
303 |
+
if use_linear_attn: attn_type = "linear"
|
304 |
+
self.ch = ch
|
305 |
+
self.temb_ch = self.ch*4
|
306 |
+
self.num_resolutions = len(ch_mult)
|
307 |
+
self.num_res_blocks = num_res_blocks
|
308 |
+
self.resolution = resolution
|
309 |
+
self.in_channels = in_channels
|
310 |
+
|
311 |
+
self.use_timestep = use_timestep
|
312 |
+
if self.use_timestep:
|
313 |
+
# timestep embedding
|
314 |
+
self.temb = nn.Module()
|
315 |
+
self.temb.dense = nn.ModuleList([
|
316 |
+
ops.Linear(self.ch,
|
317 |
+
self.temb_ch),
|
318 |
+
ops.Linear(self.temb_ch,
|
319 |
+
self.temb_ch),
|
320 |
+
])
|
321 |
+
|
322 |
+
# downsampling
|
323 |
+
self.conv_in = ops.Conv2d(in_channels,
|
324 |
+
self.ch,
|
325 |
+
kernel_size=3,
|
326 |
+
stride=1,
|
327 |
+
padding=1)
|
328 |
+
|
329 |
+
curr_res = resolution
|
330 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
331 |
+
self.down = nn.ModuleList()
|
332 |
+
for i_level in range(self.num_resolutions):
|
333 |
+
block = nn.ModuleList()
|
334 |
+
attn = nn.ModuleList()
|
335 |
+
block_in = ch*in_ch_mult[i_level]
|
336 |
+
block_out = ch*ch_mult[i_level]
|
337 |
+
for i_block in range(self.num_res_blocks):
|
338 |
+
block.append(ResnetBlock(in_channels=block_in,
|
339 |
+
out_channels=block_out,
|
340 |
+
temb_channels=self.temb_ch,
|
341 |
+
dropout=dropout))
|
342 |
+
block_in = block_out
|
343 |
+
if curr_res in attn_resolutions:
|
344 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
345 |
+
down = nn.Module()
|
346 |
+
down.block = block
|
347 |
+
down.attn = attn
|
348 |
+
if i_level != self.num_resolutions-1:
|
349 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
350 |
+
curr_res = curr_res // 2
|
351 |
+
self.down.append(down)
|
352 |
+
|
353 |
+
# middle
|
354 |
+
self.mid = nn.Module()
|
355 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
356 |
+
out_channels=block_in,
|
357 |
+
temb_channels=self.temb_ch,
|
358 |
+
dropout=dropout)
|
359 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
360 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
361 |
+
out_channels=block_in,
|
362 |
+
temb_channels=self.temb_ch,
|
363 |
+
dropout=dropout)
|
364 |
+
|
365 |
+
# upsampling
|
366 |
+
self.up = nn.ModuleList()
|
367 |
+
for i_level in reversed(range(self.num_resolutions)):
|
368 |
+
block = nn.ModuleList()
|
369 |
+
attn = nn.ModuleList()
|
370 |
+
block_out = ch*ch_mult[i_level]
|
371 |
+
skip_in = ch*ch_mult[i_level]
|
372 |
+
for i_block in range(self.num_res_blocks+1):
|
373 |
+
if i_block == self.num_res_blocks:
|
374 |
+
skip_in = ch*in_ch_mult[i_level]
|
375 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
376 |
+
out_channels=block_out,
|
377 |
+
temb_channels=self.temb_ch,
|
378 |
+
dropout=dropout))
|
379 |
+
block_in = block_out
|
380 |
+
if curr_res in attn_resolutions:
|
381 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
382 |
+
up = nn.Module()
|
383 |
+
up.block = block
|
384 |
+
up.attn = attn
|
385 |
+
if i_level != 0:
|
386 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
387 |
+
curr_res = curr_res * 2
|
388 |
+
self.up.insert(0, up) # prepend to get consistent order
|
389 |
+
|
390 |
+
# end
|
391 |
+
self.norm_out = Normalize(block_in)
|
392 |
+
self.conv_out = ops.Conv2d(block_in,
|
393 |
+
out_ch,
|
394 |
+
kernel_size=3,
|
395 |
+
stride=1,
|
396 |
+
padding=1)
|
397 |
+
|
398 |
+
def forward(self, x, t=None, context=None):
|
399 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
400 |
+
if context is not None:
|
401 |
+
# assume aligned context, cat along channel axis
|
402 |
+
x = torch.cat((x, context), dim=1)
|
403 |
+
if self.use_timestep:
|
404 |
+
# timestep embedding
|
405 |
+
assert t is not None
|
406 |
+
temb = get_timestep_embedding(t, self.ch)
|
407 |
+
temb = self.temb.dense[0](temb)
|
408 |
+
temb = nonlinearity(temb)
|
409 |
+
temb = self.temb.dense[1](temb)
|
410 |
+
else:
|
411 |
+
temb = None
|
412 |
+
|
413 |
+
# downsampling
|
414 |
+
hs = [self.conv_in(x)]
|
415 |
+
for i_level in range(self.num_resolutions):
|
416 |
+
for i_block in range(self.num_res_blocks):
|
417 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
418 |
+
if len(self.down[i_level].attn) > 0:
|
419 |
+
h = self.down[i_level].attn[i_block](h)
|
420 |
+
hs.append(h)
|
421 |
+
if i_level != self.num_resolutions-1:
|
422 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
423 |
+
|
424 |
+
# middle
|
425 |
+
h = hs[-1]
|
426 |
+
h = self.mid.block_1(h, temb)
|
427 |
+
h = self.mid.attn_1(h)
|
428 |
+
h = self.mid.block_2(h, temb)
|
429 |
+
|
430 |
+
# upsampling
|
431 |
+
for i_level in reversed(range(self.num_resolutions)):
|
432 |
+
for i_block in range(self.num_res_blocks+1):
|
433 |
+
h = self.up[i_level].block[i_block](
|
434 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
435 |
+
if len(self.up[i_level].attn) > 0:
|
436 |
+
h = self.up[i_level].attn[i_block](h)
|
437 |
+
if i_level != 0:
|
438 |
+
h = self.up[i_level].upsample(h)
|
439 |
+
|
440 |
+
# end
|
441 |
+
h = self.norm_out(h)
|
442 |
+
h = nonlinearity(h)
|
443 |
+
h = self.conv_out(h)
|
444 |
+
return h
|
445 |
+
|
446 |
+
def get_last_layer(self):
|
447 |
+
return self.conv_out.weight
|
448 |
+
|
449 |
+
|
450 |
+
class Encoder(nn.Module):
|
451 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
452 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
453 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
454 |
+
**ignore_kwargs):
|
455 |
+
super().__init__()
|
456 |
+
if use_linear_attn: attn_type = "linear"
|
457 |
+
self.ch = ch
|
458 |
+
self.temb_ch = 0
|
459 |
+
self.num_resolutions = len(ch_mult)
|
460 |
+
self.num_res_blocks = num_res_blocks
|
461 |
+
self.resolution = resolution
|
462 |
+
self.in_channels = in_channels
|
463 |
+
|
464 |
+
# downsampling
|
465 |
+
self.conv_in = ops.Conv2d(in_channels,
|
466 |
+
self.ch,
|
467 |
+
kernel_size=3,
|
468 |
+
stride=1,
|
469 |
+
padding=1)
|
470 |
+
|
471 |
+
curr_res = resolution
|
472 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
473 |
+
self.in_ch_mult = in_ch_mult
|
474 |
+
self.down = nn.ModuleList()
|
475 |
+
for i_level in range(self.num_resolutions):
|
476 |
+
block = nn.ModuleList()
|
477 |
+
attn = nn.ModuleList()
|
478 |
+
block_in = ch*in_ch_mult[i_level]
|
479 |
+
block_out = ch*ch_mult[i_level]
|
480 |
+
for i_block in range(self.num_res_blocks):
|
481 |
+
block.append(ResnetBlock(in_channels=block_in,
|
482 |
+
out_channels=block_out,
|
483 |
+
temb_channels=self.temb_ch,
|
484 |
+
dropout=dropout))
|
485 |
+
block_in = block_out
|
486 |
+
if curr_res in attn_resolutions:
|
487 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
488 |
+
down = nn.Module()
|
489 |
+
down.block = block
|
490 |
+
down.attn = attn
|
491 |
+
if i_level != self.num_resolutions-1:
|
492 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
493 |
+
curr_res = curr_res // 2
|
494 |
+
self.down.append(down)
|
495 |
+
|
496 |
+
# middle
|
497 |
+
self.mid = nn.Module()
|
498 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
499 |
+
out_channels=block_in,
|
500 |
+
temb_channels=self.temb_ch,
|
501 |
+
dropout=dropout)
|
502 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
503 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
504 |
+
out_channels=block_in,
|
505 |
+
temb_channels=self.temb_ch,
|
506 |
+
dropout=dropout)
|
507 |
+
|
508 |
+
# end
|
509 |
+
self.norm_out = Normalize(block_in)
|
510 |
+
self.conv_out = ops.Conv2d(block_in,
|
511 |
+
2*z_channels if double_z else z_channels,
|
512 |
+
kernel_size=3,
|
513 |
+
stride=1,
|
514 |
+
padding=1)
|
515 |
+
|
516 |
+
def forward(self, x):
|
517 |
+
# timestep embedding
|
518 |
+
temb = None
|
519 |
+
# downsampling
|
520 |
+
h = self.conv_in(x)
|
521 |
+
for i_level in range(self.num_resolutions):
|
522 |
+
for i_block in range(self.num_res_blocks):
|
523 |
+
h = self.down[i_level].block[i_block](h, temb)
|
524 |
+
if len(self.down[i_level].attn) > 0:
|
525 |
+
h = self.down[i_level].attn[i_block](h)
|
526 |
+
if i_level != self.num_resolutions-1:
|
527 |
+
h = self.down[i_level].downsample(h)
|
528 |
+
|
529 |
+
# middle
|
530 |
+
h = self.mid.block_1(h, temb)
|
531 |
+
h = self.mid.attn_1(h)
|
532 |
+
h = self.mid.block_2(h, temb)
|
533 |
+
|
534 |
+
# end
|
535 |
+
h = self.norm_out(h)
|
536 |
+
h = nonlinearity(h)
|
537 |
+
h = self.conv_out(h)
|
538 |
+
return h
|
539 |
+
|
540 |
+
|
541 |
+
class Decoder(nn.Module):
|
542 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
543 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
544 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
545 |
+
conv_out_op=ops.Conv2d,
|
546 |
+
resnet_op=ResnetBlock,
|
547 |
+
attn_op=AttnBlock,
|
548 |
+
**ignorekwargs):
|
549 |
+
super().__init__()
|
550 |
+
if use_linear_attn: attn_type = "linear"
|
551 |
+
self.ch = ch
|
552 |
+
self.temb_ch = 0
|
553 |
+
self.num_resolutions = len(ch_mult)
|
554 |
+
self.num_res_blocks = num_res_blocks
|
555 |
+
self.resolution = resolution
|
556 |
+
self.in_channels = in_channels
|
557 |
+
self.give_pre_end = give_pre_end
|
558 |
+
self.tanh_out = tanh_out
|
559 |
+
|
560 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
561 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
562 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
563 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
564 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
565 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
566 |
+
self.z_shape, np.prod(self.z_shape)))
|
567 |
+
|
568 |
+
# z to block_in
|
569 |
+
self.conv_in = ops.Conv2d(z_channels,
|
570 |
+
block_in,
|
571 |
+
kernel_size=3,
|
572 |
+
stride=1,
|
573 |
+
padding=1)
|
574 |
+
|
575 |
+
# middle
|
576 |
+
self.mid = nn.Module()
|
577 |
+
self.mid.block_1 = resnet_op(in_channels=block_in,
|
578 |
+
out_channels=block_in,
|
579 |
+
temb_channels=self.temb_ch,
|
580 |
+
dropout=dropout)
|
581 |
+
self.mid.attn_1 = attn_op(block_in)
|
582 |
+
self.mid.block_2 = resnet_op(in_channels=block_in,
|
583 |
+
out_channels=block_in,
|
584 |
+
temb_channels=self.temb_ch,
|
585 |
+
dropout=dropout)
|
586 |
+
|
587 |
+
# upsampling
|
588 |
+
self.up = nn.ModuleList()
|
589 |
+
for i_level in reversed(range(self.num_resolutions)):
|
590 |
+
block = nn.ModuleList()
|
591 |
+
attn = nn.ModuleList()
|
592 |
+
block_out = ch*ch_mult[i_level]
|
593 |
+
for i_block in range(self.num_res_blocks+1):
|
594 |
+
block.append(resnet_op(in_channels=block_in,
|
595 |
+
out_channels=block_out,
|
596 |
+
temb_channels=self.temb_ch,
|
597 |
+
dropout=dropout))
|
598 |
+
block_in = block_out
|
599 |
+
if curr_res in attn_resolutions:
|
600 |
+
attn.append(attn_op(block_in))
|
601 |
+
up = nn.Module()
|
602 |
+
up.block = block
|
603 |
+
up.attn = attn
|
604 |
+
if i_level != 0:
|
605 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
606 |
+
curr_res = curr_res * 2
|
607 |
+
self.up.insert(0, up) # prepend to get consistent order
|
608 |
+
|
609 |
+
# end
|
610 |
+
self.norm_out = Normalize(block_in)
|
611 |
+
self.conv_out = conv_out_op(block_in,
|
612 |
+
out_ch,
|
613 |
+
kernel_size=3,
|
614 |
+
stride=1,
|
615 |
+
padding=1)
|
616 |
+
|
617 |
+
def forward(self, z, **kwargs):
|
618 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
619 |
+
self.last_z_shape = z.shape
|
620 |
+
|
621 |
+
# timestep embedding
|
622 |
+
temb = None
|
623 |
+
|
624 |
+
# z to block_in
|
625 |
+
h = self.conv_in(z)
|
626 |
+
|
627 |
+
# middle
|
628 |
+
h = self.mid.block_1(h, temb, **kwargs)
|
629 |
+
h = self.mid.attn_1(h, **kwargs)
|
630 |
+
h = self.mid.block_2(h, temb, **kwargs)
|
631 |
+
|
632 |
+
# upsampling
|
633 |
+
for i_level in reversed(range(self.num_resolutions)):
|
634 |
+
for i_block in range(self.num_res_blocks+1):
|
635 |
+
h = self.up[i_level].block[i_block](h, temb, **kwargs)
|
636 |
+
if len(self.up[i_level].attn) > 0:
|
637 |
+
h = self.up[i_level].attn[i_block](h, **kwargs)
|
638 |
+
if i_level != 0:
|
639 |
+
h = self.up[i_level].upsample(h)
|
640 |
+
|
641 |
+
# end
|
642 |
+
if self.give_pre_end:
|
643 |
+
return h
|
644 |
+
|
645 |
+
h = self.norm_out(h)
|
646 |
+
h = nonlinearity(h)
|
647 |
+
h = self.conv_out(h, **kwargs)
|
648 |
+
if self.tanh_out:
|
649 |
+
h = torch.tanh(h)
|
650 |
+
return h
|
ldm_patched/ldm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,886 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
|
3 |
+
import torch as th
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from .util import (
|
9 |
+
checkpoint,
|
10 |
+
avg_pool_nd,
|
11 |
+
zero_module,
|
12 |
+
timestep_embedding,
|
13 |
+
AlphaBlender,
|
14 |
+
)
|
15 |
+
from ..attention import SpatialTransformer, SpatialVideoTransformer, default
|
16 |
+
from ldm_patched.ldm.util import exists
|
17 |
+
import ldm_patched.modules.ops
|
18 |
+
ops = ldm_patched.modules.ops.disable_weight_init
|
19 |
+
|
20 |
+
class TimestepBlock(nn.Module):
|
21 |
+
"""
|
22 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
23 |
+
"""
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def forward(self, x, emb):
|
27 |
+
"""
|
28 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
29 |
+
"""
|
30 |
+
|
31 |
+
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
|
32 |
+
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
|
33 |
+
for layer in ts:
|
34 |
+
if isinstance(layer, VideoResBlock):
|
35 |
+
x = layer(x, emb, num_video_frames, image_only_indicator)
|
36 |
+
elif isinstance(layer, TimestepBlock):
|
37 |
+
x = layer(x, emb)
|
38 |
+
elif isinstance(layer, SpatialVideoTransformer):
|
39 |
+
x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
|
40 |
+
if "transformer_index" in transformer_options:
|
41 |
+
transformer_options["transformer_index"] += 1
|
42 |
+
elif isinstance(layer, SpatialTransformer):
|
43 |
+
x = layer(x, context, transformer_options)
|
44 |
+
if "transformer_index" in transformer_options:
|
45 |
+
transformer_options["transformer_index"] += 1
|
46 |
+
elif isinstance(layer, Upsample):
|
47 |
+
x = layer(x, output_shape=output_shape)
|
48 |
+
else:
|
49 |
+
x = layer(x)
|
50 |
+
return x
|
51 |
+
|
52 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
53 |
+
"""
|
54 |
+
A sequential module that passes timestep embeddings to the children that
|
55 |
+
support it as an extra input.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def forward(self, *args, **kwargs):
|
59 |
+
return forward_timestep_embed(self, *args, **kwargs)
|
60 |
+
|
61 |
+
class Upsample(nn.Module):
|
62 |
+
"""
|
63 |
+
An upsampling layer with an optional convolution.
|
64 |
+
:param channels: channels in the inputs and outputs.
|
65 |
+
:param use_conv: a bool determining if a convolution is applied.
|
66 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
67 |
+
upsampling occurs in the inner-two dimensions.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
|
71 |
+
super().__init__()
|
72 |
+
self.channels = channels
|
73 |
+
self.out_channels = out_channels or channels
|
74 |
+
self.use_conv = use_conv
|
75 |
+
self.dims = dims
|
76 |
+
if use_conv:
|
77 |
+
self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
|
78 |
+
|
79 |
+
def forward(self, x, output_shape=None):
|
80 |
+
assert x.shape[1] == self.channels
|
81 |
+
if self.dims == 3:
|
82 |
+
shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
|
83 |
+
if output_shape is not None:
|
84 |
+
shape[1] = output_shape[3]
|
85 |
+
shape[2] = output_shape[4]
|
86 |
+
else:
|
87 |
+
shape = [x.shape[2] * 2, x.shape[3] * 2]
|
88 |
+
if output_shape is not None:
|
89 |
+
shape[0] = output_shape[2]
|
90 |
+
shape[1] = output_shape[3]
|
91 |
+
|
92 |
+
x = F.interpolate(x, size=shape, mode="nearest")
|
93 |
+
if self.use_conv:
|
94 |
+
x = self.conv(x)
|
95 |
+
return x
|
96 |
+
|
97 |
+
class Downsample(nn.Module):
|
98 |
+
"""
|
99 |
+
A downsampling layer with an optional convolution.
|
100 |
+
:param channels: channels in the inputs and outputs.
|
101 |
+
:param use_conv: a bool determining if a convolution is applied.
|
102 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
103 |
+
downsampling occurs in the inner-two dimensions.
|
104 |
+
"""
|
105 |
+
|
106 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
|
107 |
+
super().__init__()
|
108 |
+
self.channels = channels
|
109 |
+
self.out_channels = out_channels or channels
|
110 |
+
self.use_conv = use_conv
|
111 |
+
self.dims = dims
|
112 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
113 |
+
if use_conv:
|
114 |
+
self.op = operations.conv_nd(
|
115 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
assert self.channels == self.out_channels
|
119 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
120 |
+
|
121 |
+
def forward(self, x):
|
122 |
+
assert x.shape[1] == self.channels
|
123 |
+
return self.op(x)
|
124 |
+
|
125 |
+
|
126 |
+
class ResBlock(TimestepBlock):
|
127 |
+
"""
|
128 |
+
A residual block that can optionally change the number of channels.
|
129 |
+
:param channels: the number of input channels.
|
130 |
+
:param emb_channels: the number of timestep embedding channels.
|
131 |
+
:param dropout: the rate of dropout.
|
132 |
+
:param out_channels: if specified, the number of out channels.
|
133 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
134 |
+
convolution instead of a smaller 1x1 convolution to change the
|
135 |
+
channels in the skip connection.
|
136 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
137 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
138 |
+
:param up: if True, use this block for upsampling.
|
139 |
+
:param down: if True, use this block for downsampling.
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
channels,
|
145 |
+
emb_channels,
|
146 |
+
dropout,
|
147 |
+
out_channels=None,
|
148 |
+
use_conv=False,
|
149 |
+
use_scale_shift_norm=False,
|
150 |
+
dims=2,
|
151 |
+
use_checkpoint=False,
|
152 |
+
up=False,
|
153 |
+
down=False,
|
154 |
+
kernel_size=3,
|
155 |
+
exchange_temb_dims=False,
|
156 |
+
skip_t_emb=False,
|
157 |
+
dtype=None,
|
158 |
+
device=None,
|
159 |
+
operations=ops
|
160 |
+
):
|
161 |
+
super().__init__()
|
162 |
+
self.channels = channels
|
163 |
+
self.emb_channels = emb_channels
|
164 |
+
self.dropout = dropout
|
165 |
+
self.out_channels = out_channels or channels
|
166 |
+
self.use_conv = use_conv
|
167 |
+
self.use_checkpoint = use_checkpoint
|
168 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
169 |
+
self.exchange_temb_dims = exchange_temb_dims
|
170 |
+
|
171 |
+
if isinstance(kernel_size, list):
|
172 |
+
padding = [k // 2 for k in kernel_size]
|
173 |
+
else:
|
174 |
+
padding = kernel_size // 2
|
175 |
+
|
176 |
+
self.in_layers = nn.Sequential(
|
177 |
+
operations.GroupNorm(32, channels, dtype=dtype, device=device),
|
178 |
+
nn.SiLU(),
|
179 |
+
operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
|
180 |
+
)
|
181 |
+
|
182 |
+
self.updown = up or down
|
183 |
+
|
184 |
+
if up:
|
185 |
+
self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
|
186 |
+
self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
|
187 |
+
elif down:
|
188 |
+
self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
|
189 |
+
self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
|
190 |
+
else:
|
191 |
+
self.h_upd = self.x_upd = nn.Identity()
|
192 |
+
|
193 |
+
self.skip_t_emb = skip_t_emb
|
194 |
+
if self.skip_t_emb:
|
195 |
+
self.emb_layers = None
|
196 |
+
self.exchange_temb_dims = False
|
197 |
+
else:
|
198 |
+
self.emb_layers = nn.Sequential(
|
199 |
+
nn.SiLU(),
|
200 |
+
operations.Linear(
|
201 |
+
emb_channels,
|
202 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
|
203 |
+
),
|
204 |
+
)
|
205 |
+
self.out_layers = nn.Sequential(
|
206 |
+
operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
|
207 |
+
nn.SiLU(),
|
208 |
+
nn.Dropout(p=dropout),
|
209 |
+
operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
|
210 |
+
,
|
211 |
+
)
|
212 |
+
|
213 |
+
if self.out_channels == channels:
|
214 |
+
self.skip_connection = nn.Identity()
|
215 |
+
elif use_conv:
|
216 |
+
self.skip_connection = operations.conv_nd(
|
217 |
+
dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
|
218 |
+
)
|
219 |
+
else:
|
220 |
+
self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
|
221 |
+
|
222 |
+
def forward(self, x, emb):
|
223 |
+
"""
|
224 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
225 |
+
:param x: an [N x C x ...] Tensor of features.
|
226 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
227 |
+
:return: an [N x C x ...] Tensor of outputs.
|
228 |
+
"""
|
229 |
+
return checkpoint(
|
230 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
231 |
+
)
|
232 |
+
|
233 |
+
|
234 |
+
def _forward(self, x, emb):
|
235 |
+
if self.updown:
|
236 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
237 |
+
h = in_rest(x)
|
238 |
+
h = self.h_upd(h)
|
239 |
+
x = self.x_upd(x)
|
240 |
+
h = in_conv(h)
|
241 |
+
else:
|
242 |
+
h = self.in_layers(x)
|
243 |
+
|
244 |
+
emb_out = None
|
245 |
+
if not self.skip_t_emb:
|
246 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
247 |
+
while len(emb_out.shape) < len(h.shape):
|
248 |
+
emb_out = emb_out[..., None]
|
249 |
+
if self.use_scale_shift_norm:
|
250 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
251 |
+
h = out_norm(h)
|
252 |
+
if emb_out is not None:
|
253 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
254 |
+
h *= (1 + scale)
|
255 |
+
h += shift
|
256 |
+
h = out_rest(h)
|
257 |
+
else:
|
258 |
+
if emb_out is not None:
|
259 |
+
if self.exchange_temb_dims:
|
260 |
+
emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
|
261 |
+
h = h + emb_out
|
262 |
+
h = self.out_layers(h)
|
263 |
+
return self.skip_connection(x) + h
|
264 |
+
|
265 |
+
|
266 |
+
class VideoResBlock(ResBlock):
|
267 |
+
def __init__(
|
268 |
+
self,
|
269 |
+
channels: int,
|
270 |
+
emb_channels: int,
|
271 |
+
dropout: float,
|
272 |
+
video_kernel_size=3,
|
273 |
+
merge_strategy: str = "fixed",
|
274 |
+
merge_factor: float = 0.5,
|
275 |
+
out_channels=None,
|
276 |
+
use_conv: bool = False,
|
277 |
+
use_scale_shift_norm: bool = False,
|
278 |
+
dims: int = 2,
|
279 |
+
use_checkpoint: bool = False,
|
280 |
+
up: bool = False,
|
281 |
+
down: bool = False,
|
282 |
+
dtype=None,
|
283 |
+
device=None,
|
284 |
+
operations=ops
|
285 |
+
):
|
286 |
+
super().__init__(
|
287 |
+
channels,
|
288 |
+
emb_channels,
|
289 |
+
dropout,
|
290 |
+
out_channels=out_channels,
|
291 |
+
use_conv=use_conv,
|
292 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
293 |
+
dims=dims,
|
294 |
+
use_checkpoint=use_checkpoint,
|
295 |
+
up=up,
|
296 |
+
down=down,
|
297 |
+
dtype=dtype,
|
298 |
+
device=device,
|
299 |
+
operations=operations
|
300 |
+
)
|
301 |
+
|
302 |
+
self.time_stack = ResBlock(
|
303 |
+
default(out_channels, channels),
|
304 |
+
emb_channels,
|
305 |
+
dropout=dropout,
|
306 |
+
dims=3,
|
307 |
+
out_channels=default(out_channels, channels),
|
308 |
+
use_scale_shift_norm=False,
|
309 |
+
use_conv=False,
|
310 |
+
up=False,
|
311 |
+
down=False,
|
312 |
+
kernel_size=video_kernel_size,
|
313 |
+
use_checkpoint=use_checkpoint,
|
314 |
+
exchange_temb_dims=True,
|
315 |
+
dtype=dtype,
|
316 |
+
device=device,
|
317 |
+
operations=operations
|
318 |
+
)
|
319 |
+
self.time_mixer = AlphaBlender(
|
320 |
+
alpha=merge_factor,
|
321 |
+
merge_strategy=merge_strategy,
|
322 |
+
rearrange_pattern="b t -> b 1 t 1 1",
|
323 |
+
)
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
x: th.Tensor,
|
328 |
+
emb: th.Tensor,
|
329 |
+
num_video_frames: int,
|
330 |
+
image_only_indicator = None,
|
331 |
+
) -> th.Tensor:
|
332 |
+
x = super().forward(x, emb)
|
333 |
+
|
334 |
+
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
335 |
+
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
|
336 |
+
|
337 |
+
x = self.time_stack(
|
338 |
+
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
|
339 |
+
)
|
340 |
+
x = self.time_mixer(
|
341 |
+
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
|
342 |
+
)
|
343 |
+
x = rearrange(x, "b c t h w -> (b t) c h w")
|
344 |
+
return x
|
345 |
+
|
346 |
+
|
347 |
+
class Timestep(nn.Module):
|
348 |
+
def __init__(self, dim):
|
349 |
+
super().__init__()
|
350 |
+
self.dim = dim
|
351 |
+
|
352 |
+
def forward(self, t):
|
353 |
+
return timestep_embedding(t, self.dim)
|
354 |
+
|
355 |
+
def apply_control(h, control, name):
|
356 |
+
if control is not None and name in control and len(control[name]) > 0:
|
357 |
+
ctrl = control[name].pop()
|
358 |
+
if ctrl is not None:
|
359 |
+
try:
|
360 |
+
h += ctrl
|
361 |
+
except:
|
362 |
+
print("warning control could not be applied", h.shape, ctrl.shape)
|
363 |
+
return h
|
364 |
+
|
365 |
+
class UNetModel(nn.Module):
|
366 |
+
"""
|
367 |
+
The full UNet model with attention and timestep embedding.
|
368 |
+
:param in_channels: channels in the input Tensor.
|
369 |
+
:param model_channels: base channel count for the model.
|
370 |
+
:param out_channels: channels in the output Tensor.
|
371 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
372 |
+
:param dropout: the dropout probability.
|
373 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
374 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
375 |
+
downsampling.
|
376 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
377 |
+
:param num_classes: if specified (as an int), then this model will be
|
378 |
+
class-conditional with `num_classes` classes.
|
379 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
380 |
+
:param num_heads: the number of attention heads in each attention layer.
|
381 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
382 |
+
a fixed channel width per attention head.
|
383 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
384 |
+
of heads for upsampling. Deprecated.
|
385 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
386 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
387 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
388 |
+
increased efficiency.
|
389 |
+
"""
|
390 |
+
|
391 |
+
def __init__(
|
392 |
+
self,
|
393 |
+
image_size,
|
394 |
+
in_channels,
|
395 |
+
model_channels,
|
396 |
+
out_channels,
|
397 |
+
num_res_blocks,
|
398 |
+
dropout=0,
|
399 |
+
channel_mult=(1, 2, 4, 8),
|
400 |
+
conv_resample=True,
|
401 |
+
dims=2,
|
402 |
+
num_classes=None,
|
403 |
+
use_checkpoint=False,
|
404 |
+
dtype=th.float32,
|
405 |
+
num_heads=-1,
|
406 |
+
num_head_channels=-1,
|
407 |
+
num_heads_upsample=-1,
|
408 |
+
use_scale_shift_norm=False,
|
409 |
+
resblock_updown=False,
|
410 |
+
use_new_attention_order=False,
|
411 |
+
use_spatial_transformer=False, # custom transformer support
|
412 |
+
transformer_depth=1, # custom transformer support
|
413 |
+
context_dim=None, # custom transformer support
|
414 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
415 |
+
legacy=True,
|
416 |
+
disable_self_attentions=None,
|
417 |
+
num_attention_blocks=None,
|
418 |
+
disable_middle_self_attn=False,
|
419 |
+
use_linear_in_transformer=False,
|
420 |
+
adm_in_channels=None,
|
421 |
+
transformer_depth_middle=None,
|
422 |
+
transformer_depth_output=None,
|
423 |
+
use_temporal_resblock=False,
|
424 |
+
use_temporal_attention=False,
|
425 |
+
time_context_dim=None,
|
426 |
+
extra_ff_mix_layer=False,
|
427 |
+
use_spatial_context=False,
|
428 |
+
merge_strategy=None,
|
429 |
+
merge_factor=0.0,
|
430 |
+
video_kernel_size=None,
|
431 |
+
disable_temporal_crossattention=False,
|
432 |
+
max_ddpm_temb_period=10000,
|
433 |
+
device=None,
|
434 |
+
operations=ops,
|
435 |
+
):
|
436 |
+
super().__init__()
|
437 |
+
|
438 |
+
if context_dim is not None:
|
439 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
440 |
+
# from omegaconf.listconfig import ListConfig
|
441 |
+
# if type(context_dim) == ListConfig:
|
442 |
+
# context_dim = list(context_dim)
|
443 |
+
|
444 |
+
if num_heads_upsample == -1:
|
445 |
+
num_heads_upsample = num_heads
|
446 |
+
|
447 |
+
if num_heads == -1:
|
448 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
449 |
+
|
450 |
+
if num_head_channels == -1:
|
451 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
452 |
+
|
453 |
+
self.in_channels = in_channels
|
454 |
+
self.model_channels = model_channels
|
455 |
+
self.out_channels = out_channels
|
456 |
+
|
457 |
+
if isinstance(num_res_blocks, int):
|
458 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
459 |
+
else:
|
460 |
+
if len(num_res_blocks) != len(channel_mult):
|
461 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
462 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
463 |
+
self.num_res_blocks = num_res_blocks
|
464 |
+
|
465 |
+
if disable_self_attentions is not None:
|
466 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
467 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
468 |
+
if num_attention_blocks is not None:
|
469 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
470 |
+
|
471 |
+
transformer_depth = transformer_depth[:]
|
472 |
+
transformer_depth_output = transformer_depth_output[:]
|
473 |
+
|
474 |
+
self.dropout = dropout
|
475 |
+
self.channel_mult = channel_mult
|
476 |
+
self.conv_resample = conv_resample
|
477 |
+
self.num_classes = num_classes
|
478 |
+
self.use_checkpoint = use_checkpoint
|
479 |
+
self.dtype = dtype
|
480 |
+
self.num_heads = num_heads
|
481 |
+
self.num_head_channels = num_head_channels
|
482 |
+
self.num_heads_upsample = num_heads_upsample
|
483 |
+
self.use_temporal_resblocks = use_temporal_resblock
|
484 |
+
self.predict_codebook_ids = n_embed is not None
|
485 |
+
|
486 |
+
self.default_num_video_frames = None
|
487 |
+
self.default_image_only_indicator = None
|
488 |
+
|
489 |
+
time_embed_dim = model_channels * 4
|
490 |
+
self.time_embed = nn.Sequential(
|
491 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
492 |
+
nn.SiLU(),
|
493 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
494 |
+
)
|
495 |
+
|
496 |
+
if self.num_classes is not None:
|
497 |
+
if isinstance(self.num_classes, int):
|
498 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
|
499 |
+
elif self.num_classes == "continuous":
|
500 |
+
print("setting up linear c_adm embedding layer")
|
501 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
502 |
+
elif self.num_classes == "sequential":
|
503 |
+
assert adm_in_channels is not None
|
504 |
+
self.label_emb = nn.Sequential(
|
505 |
+
nn.Sequential(
|
506 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
507 |
+
nn.SiLU(),
|
508 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
509 |
+
)
|
510 |
+
)
|
511 |
+
else:
|
512 |
+
raise ValueError()
|
513 |
+
|
514 |
+
self.input_blocks = nn.ModuleList(
|
515 |
+
[
|
516 |
+
TimestepEmbedSequential(
|
517 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
518 |
+
)
|
519 |
+
]
|
520 |
+
)
|
521 |
+
self._feature_size = model_channels
|
522 |
+
input_block_chans = [model_channels]
|
523 |
+
ch = model_channels
|
524 |
+
ds = 1
|
525 |
+
|
526 |
+
def get_attention_layer(
|
527 |
+
ch,
|
528 |
+
num_heads,
|
529 |
+
dim_head,
|
530 |
+
depth=1,
|
531 |
+
context_dim=None,
|
532 |
+
use_checkpoint=False,
|
533 |
+
disable_self_attn=False,
|
534 |
+
):
|
535 |
+
if use_temporal_attention:
|
536 |
+
return SpatialVideoTransformer(
|
537 |
+
ch,
|
538 |
+
num_heads,
|
539 |
+
dim_head,
|
540 |
+
depth=depth,
|
541 |
+
context_dim=context_dim,
|
542 |
+
time_context_dim=time_context_dim,
|
543 |
+
dropout=dropout,
|
544 |
+
ff_in=extra_ff_mix_layer,
|
545 |
+
use_spatial_context=use_spatial_context,
|
546 |
+
merge_strategy=merge_strategy,
|
547 |
+
merge_factor=merge_factor,
|
548 |
+
checkpoint=use_checkpoint,
|
549 |
+
use_linear=use_linear_in_transformer,
|
550 |
+
disable_self_attn=disable_self_attn,
|
551 |
+
disable_temporal_crossattention=disable_temporal_crossattention,
|
552 |
+
max_time_embed_period=max_ddpm_temb_period,
|
553 |
+
dtype=self.dtype, device=device, operations=operations
|
554 |
+
)
|
555 |
+
else:
|
556 |
+
return SpatialTransformer(
|
557 |
+
ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
|
558 |
+
disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
|
559 |
+
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
|
560 |
+
)
|
561 |
+
|
562 |
+
def get_resblock(
|
563 |
+
merge_factor,
|
564 |
+
merge_strategy,
|
565 |
+
video_kernel_size,
|
566 |
+
ch,
|
567 |
+
time_embed_dim,
|
568 |
+
dropout,
|
569 |
+
out_channels,
|
570 |
+
dims,
|
571 |
+
use_checkpoint,
|
572 |
+
use_scale_shift_norm,
|
573 |
+
down=False,
|
574 |
+
up=False,
|
575 |
+
dtype=None,
|
576 |
+
device=None,
|
577 |
+
operations=ops
|
578 |
+
):
|
579 |
+
if self.use_temporal_resblocks:
|
580 |
+
return VideoResBlock(
|
581 |
+
merge_factor=merge_factor,
|
582 |
+
merge_strategy=merge_strategy,
|
583 |
+
video_kernel_size=video_kernel_size,
|
584 |
+
channels=ch,
|
585 |
+
emb_channels=time_embed_dim,
|
586 |
+
dropout=dropout,
|
587 |
+
out_channels=out_channels,
|
588 |
+
dims=dims,
|
589 |
+
use_checkpoint=use_checkpoint,
|
590 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
591 |
+
down=down,
|
592 |
+
up=up,
|
593 |
+
dtype=dtype,
|
594 |
+
device=device,
|
595 |
+
operations=operations
|
596 |
+
)
|
597 |
+
else:
|
598 |
+
return ResBlock(
|
599 |
+
channels=ch,
|
600 |
+
emb_channels=time_embed_dim,
|
601 |
+
dropout=dropout,
|
602 |
+
out_channels=out_channels,
|
603 |
+
use_checkpoint=use_checkpoint,
|
604 |
+
dims=dims,
|
605 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
606 |
+
down=down,
|
607 |
+
up=up,
|
608 |
+
dtype=dtype,
|
609 |
+
device=device,
|
610 |
+
operations=operations
|
611 |
+
)
|
612 |
+
|
613 |
+
for level, mult in enumerate(channel_mult):
|
614 |
+
for nr in range(self.num_res_blocks[level]):
|
615 |
+
layers = [
|
616 |
+
get_resblock(
|
617 |
+
merge_factor=merge_factor,
|
618 |
+
merge_strategy=merge_strategy,
|
619 |
+
video_kernel_size=video_kernel_size,
|
620 |
+
ch=ch,
|
621 |
+
time_embed_dim=time_embed_dim,
|
622 |
+
dropout=dropout,
|
623 |
+
out_channels=mult * model_channels,
|
624 |
+
dims=dims,
|
625 |
+
use_checkpoint=use_checkpoint,
|
626 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
627 |
+
dtype=self.dtype,
|
628 |
+
device=device,
|
629 |
+
operations=operations,
|
630 |
+
)
|
631 |
+
]
|
632 |
+
ch = mult * model_channels
|
633 |
+
num_transformers = transformer_depth.pop(0)
|
634 |
+
if num_transformers > 0:
|
635 |
+
if num_head_channels == -1:
|
636 |
+
dim_head = ch // num_heads
|
637 |
+
else:
|
638 |
+
num_heads = ch // num_head_channels
|
639 |
+
dim_head = num_head_channels
|
640 |
+
if legacy:
|
641 |
+
#num_heads = 1
|
642 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
643 |
+
if exists(disable_self_attentions):
|
644 |
+
disabled_sa = disable_self_attentions[level]
|
645 |
+
else:
|
646 |
+
disabled_sa = False
|
647 |
+
|
648 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
649 |
+
layers.append(get_attention_layer(
|
650 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
651 |
+
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
|
652 |
+
)
|
653 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
654 |
+
self._feature_size += ch
|
655 |
+
input_block_chans.append(ch)
|
656 |
+
if level != len(channel_mult) - 1:
|
657 |
+
out_ch = ch
|
658 |
+
self.input_blocks.append(
|
659 |
+
TimestepEmbedSequential(
|
660 |
+
get_resblock(
|
661 |
+
merge_factor=merge_factor,
|
662 |
+
merge_strategy=merge_strategy,
|
663 |
+
video_kernel_size=video_kernel_size,
|
664 |
+
ch=ch,
|
665 |
+
time_embed_dim=time_embed_dim,
|
666 |
+
dropout=dropout,
|
667 |
+
out_channels=out_ch,
|
668 |
+
dims=dims,
|
669 |
+
use_checkpoint=use_checkpoint,
|
670 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
671 |
+
down=True,
|
672 |
+
dtype=self.dtype,
|
673 |
+
device=device,
|
674 |
+
operations=operations
|
675 |
+
)
|
676 |
+
if resblock_updown
|
677 |
+
else Downsample(
|
678 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
679 |
+
)
|
680 |
+
)
|
681 |
+
)
|
682 |
+
ch = out_ch
|
683 |
+
input_block_chans.append(ch)
|
684 |
+
ds *= 2
|
685 |
+
self._feature_size += ch
|
686 |
+
|
687 |
+
if num_head_channels == -1:
|
688 |
+
dim_head = ch // num_heads
|
689 |
+
else:
|
690 |
+
num_heads = ch // num_head_channels
|
691 |
+
dim_head = num_head_channels
|
692 |
+
if legacy:
|
693 |
+
#num_heads = 1
|
694 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
695 |
+
mid_block = [
|
696 |
+
get_resblock(
|
697 |
+
merge_factor=merge_factor,
|
698 |
+
merge_strategy=merge_strategy,
|
699 |
+
video_kernel_size=video_kernel_size,
|
700 |
+
ch=ch,
|
701 |
+
time_embed_dim=time_embed_dim,
|
702 |
+
dropout=dropout,
|
703 |
+
out_channels=None,
|
704 |
+
dims=dims,
|
705 |
+
use_checkpoint=use_checkpoint,
|
706 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
707 |
+
dtype=self.dtype,
|
708 |
+
device=device,
|
709 |
+
operations=operations
|
710 |
+
)]
|
711 |
+
if transformer_depth_middle >= 0:
|
712 |
+
mid_block += [get_attention_layer( # always uses a self-attn
|
713 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
714 |
+
disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
|
715 |
+
),
|
716 |
+
get_resblock(
|
717 |
+
merge_factor=merge_factor,
|
718 |
+
merge_strategy=merge_strategy,
|
719 |
+
video_kernel_size=video_kernel_size,
|
720 |
+
ch=ch,
|
721 |
+
time_embed_dim=time_embed_dim,
|
722 |
+
dropout=dropout,
|
723 |
+
out_channels=None,
|
724 |
+
dims=dims,
|
725 |
+
use_checkpoint=use_checkpoint,
|
726 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
727 |
+
dtype=self.dtype,
|
728 |
+
device=device,
|
729 |
+
operations=operations
|
730 |
+
)]
|
731 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
732 |
+
self._feature_size += ch
|
733 |
+
|
734 |
+
self.output_blocks = nn.ModuleList([])
|
735 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
736 |
+
for i in range(self.num_res_blocks[level] + 1):
|
737 |
+
ich = input_block_chans.pop()
|
738 |
+
layers = [
|
739 |
+
get_resblock(
|
740 |
+
merge_factor=merge_factor,
|
741 |
+
merge_strategy=merge_strategy,
|
742 |
+
video_kernel_size=video_kernel_size,
|
743 |
+
ch=ch + ich,
|
744 |
+
time_embed_dim=time_embed_dim,
|
745 |
+
dropout=dropout,
|
746 |
+
out_channels=model_channels * mult,
|
747 |
+
dims=dims,
|
748 |
+
use_checkpoint=use_checkpoint,
|
749 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
750 |
+
dtype=self.dtype,
|
751 |
+
device=device,
|
752 |
+
operations=operations
|
753 |
+
)
|
754 |
+
]
|
755 |
+
ch = model_channels * mult
|
756 |
+
num_transformers = transformer_depth_output.pop()
|
757 |
+
if num_transformers > 0:
|
758 |
+
if num_head_channels == -1:
|
759 |
+
dim_head = ch // num_heads
|
760 |
+
else:
|
761 |
+
num_heads = ch // num_head_channels
|
762 |
+
dim_head = num_head_channels
|
763 |
+
if legacy:
|
764 |
+
#num_heads = 1
|
765 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
766 |
+
if exists(disable_self_attentions):
|
767 |
+
disabled_sa = disable_self_attentions[level]
|
768 |
+
else:
|
769 |
+
disabled_sa = False
|
770 |
+
|
771 |
+
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
772 |
+
layers.append(
|
773 |
+
get_attention_layer(
|
774 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
775 |
+
disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
|
776 |
+
)
|
777 |
+
)
|
778 |
+
if level and i == self.num_res_blocks[level]:
|
779 |
+
out_ch = ch
|
780 |
+
layers.append(
|
781 |
+
get_resblock(
|
782 |
+
merge_factor=merge_factor,
|
783 |
+
merge_strategy=merge_strategy,
|
784 |
+
video_kernel_size=video_kernel_size,
|
785 |
+
ch=ch,
|
786 |
+
time_embed_dim=time_embed_dim,
|
787 |
+
dropout=dropout,
|
788 |
+
out_channels=out_ch,
|
789 |
+
dims=dims,
|
790 |
+
use_checkpoint=use_checkpoint,
|
791 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
792 |
+
up=True,
|
793 |
+
dtype=self.dtype,
|
794 |
+
device=device,
|
795 |
+
operations=operations
|
796 |
+
)
|
797 |
+
if resblock_updown
|
798 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
|
799 |
+
)
|
800 |
+
ds //= 2
|
801 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
802 |
+
self._feature_size += ch
|
803 |
+
|
804 |
+
self.out = nn.Sequential(
|
805 |
+
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
806 |
+
nn.SiLU(),
|
807 |
+
zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
|
808 |
+
)
|
809 |
+
if self.predict_codebook_ids:
|
810 |
+
self.id_predictor = nn.Sequential(
|
811 |
+
operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
|
812 |
+
operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
|
813 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
814 |
+
)
|
815 |
+
|
816 |
+
def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
|
817 |
+
"""
|
818 |
+
Apply the model to an input batch.
|
819 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
820 |
+
:param timesteps: a 1-D batch of timesteps.
|
821 |
+
:param context: conditioning plugged in via crossattn
|
822 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
823 |
+
:return: an [N x C x ...] Tensor of outputs.
|
824 |
+
"""
|
825 |
+
transformer_options["original_shape"] = list(x.shape)
|
826 |
+
transformer_options["transformer_index"] = 0
|
827 |
+
transformer_patches = transformer_options.get("patches", {})
|
828 |
+
|
829 |
+
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
|
830 |
+
image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator)
|
831 |
+
time_context = kwargs.get("time_context", None)
|
832 |
+
|
833 |
+
assert (y is not None) == (
|
834 |
+
self.num_classes is not None
|
835 |
+
), "must specify y if and only if the model is class-conditional"
|
836 |
+
hs = []
|
837 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
838 |
+
emb = self.time_embed(t_emb)
|
839 |
+
|
840 |
+
if self.num_classes is not None:
|
841 |
+
assert y.shape[0] == x.shape[0]
|
842 |
+
emb = emb + self.label_emb(y)
|
843 |
+
|
844 |
+
h = x
|
845 |
+
for id, module in enumerate(self.input_blocks):
|
846 |
+
transformer_options["block"] = ("input", id)
|
847 |
+
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
848 |
+
h = apply_control(h, control, 'input')
|
849 |
+
if "input_block_patch" in transformer_patches:
|
850 |
+
patch = transformer_patches["input_block_patch"]
|
851 |
+
for p in patch:
|
852 |
+
h = p(h, transformer_options)
|
853 |
+
|
854 |
+
hs.append(h)
|
855 |
+
if "input_block_patch_after_skip" in transformer_patches:
|
856 |
+
patch = transformer_patches["input_block_patch_after_skip"]
|
857 |
+
for p in patch:
|
858 |
+
h = p(h, transformer_options)
|
859 |
+
|
860 |
+
transformer_options["block"] = ("middle", 0)
|
861 |
+
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
862 |
+
h = apply_control(h, control, 'middle')
|
863 |
+
|
864 |
+
|
865 |
+
for id, module in enumerate(self.output_blocks):
|
866 |
+
transformer_options["block"] = ("output", id)
|
867 |
+
hsp = hs.pop()
|
868 |
+
hsp = apply_control(hsp, control, 'output')
|
869 |
+
|
870 |
+
if "output_block_patch" in transformer_patches:
|
871 |
+
patch = transformer_patches["output_block_patch"]
|
872 |
+
for p in patch:
|
873 |
+
h, hsp = p(h, hsp, transformer_options)
|
874 |
+
|
875 |
+
h = th.cat([h, hsp], dim=1)
|
876 |
+
del hsp
|
877 |
+
if len(hs) > 0:
|
878 |
+
output_shape = hs[-1].shape
|
879 |
+
else:
|
880 |
+
output_shape = None
|
881 |
+
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
|
882 |
+
h = h.type(x.dtype)
|
883 |
+
if self.predict_codebook_ids:
|
884 |
+
return self.id_predictor(h)
|
885 |
+
else:
|
886 |
+
return self.out(h)
|
ldm_patched/ldm/modules/diffusionmodules/upscaling.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
from .util import extract_into_tensor, make_beta_schedule
|
7 |
+
from ldm_patched.ldm.util import default
|
8 |
+
|
9 |
+
|
10 |
+
class AbstractLowScaleModel(nn.Module):
|
11 |
+
# for concatenating a downsampled image to the latent representation
|
12 |
+
def __init__(self, noise_schedule_config=None):
|
13 |
+
super(AbstractLowScaleModel, self).__init__()
|
14 |
+
if noise_schedule_config is not None:
|
15 |
+
self.register_schedule(**noise_schedule_config)
|
16 |
+
|
17 |
+
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
18 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
19 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
20 |
+
cosine_s=cosine_s)
|
21 |
+
alphas = 1. - betas
|
22 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
23 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
24 |
+
|
25 |
+
timesteps, = betas.shape
|
26 |
+
self.num_timesteps = int(timesteps)
|
27 |
+
self.linear_start = linear_start
|
28 |
+
self.linear_end = linear_end
|
29 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
30 |
+
|
31 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
32 |
+
|
33 |
+
self.register_buffer('betas', to_torch(betas))
|
34 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
35 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
36 |
+
|
37 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
38 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
39 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
40 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
41 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
42 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
43 |
+
|
44 |
+
def q_sample(self, x_start, t, noise=None, seed=None):
|
45 |
+
if noise is None:
|
46 |
+
if seed is None:
|
47 |
+
noise = torch.randn_like(x_start)
|
48 |
+
else:
|
49 |
+
noise = torch.randn(x_start.size(), dtype=x_start.dtype, layout=x_start.layout, generator=torch.manual_seed(seed)).to(x_start.device)
|
50 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
|
51 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
return x, None
|
55 |
+
|
56 |
+
def decode(self, x):
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class SimpleImageConcat(AbstractLowScaleModel):
|
61 |
+
# no noise level conditioning
|
62 |
+
def __init__(self):
|
63 |
+
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
|
64 |
+
self.max_noise_level = 0
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
# fix to constant noise level
|
68 |
+
return x, torch.zeros(x.shape[0], device=x.device).long()
|
69 |
+
|
70 |
+
|
71 |
+
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
72 |
+
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
|
73 |
+
super().__init__(noise_schedule_config=noise_schedule_config)
|
74 |
+
self.max_noise_level = max_noise_level
|
75 |
+
|
76 |
+
def forward(self, x, noise_level=None, seed=None):
|
77 |
+
if noise_level is None:
|
78 |
+
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
79 |
+
else:
|
80 |
+
assert isinstance(noise_level, torch.Tensor)
|
81 |
+
z = self.q_sample(x, noise_level, seed=seed)
|
82 |
+
return z, noise_level
|
83 |
+
|
84 |
+
|
85 |
+
|
ldm_patched/ldm/modules/diffusionmodules/util.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat, rearrange
|
17 |
+
|
18 |
+
from ldm_patched.ldm.util import instantiate_from_config
|
19 |
+
|
20 |
+
class AlphaBlender(nn.Module):
|
21 |
+
strategies = ["learned", "fixed", "learned_with_images"]
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
alpha: float,
|
26 |
+
merge_strategy: str = "learned_with_images",
|
27 |
+
rearrange_pattern: str = "b t -> (b t) 1 1",
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.merge_strategy = merge_strategy
|
31 |
+
self.rearrange_pattern = rearrange_pattern
|
32 |
+
|
33 |
+
assert (
|
34 |
+
merge_strategy in self.strategies
|
35 |
+
), f"merge_strategy needs to be in {self.strategies}"
|
36 |
+
|
37 |
+
if self.merge_strategy == "fixed":
|
38 |
+
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
39 |
+
elif (
|
40 |
+
self.merge_strategy == "learned"
|
41 |
+
or self.merge_strategy == "learned_with_images"
|
42 |
+
):
|
43 |
+
self.register_parameter(
|
44 |
+
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
45 |
+
)
|
46 |
+
else:
|
47 |
+
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
48 |
+
|
49 |
+
def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor:
|
50 |
+
# skip_time_mix = rearrange(repeat(skip_time_mix, 'b -> (b t) () () ()', t=t), '(b t) 1 ... -> b 1 t ...', t=t)
|
51 |
+
if self.merge_strategy == "fixed":
|
52 |
+
# make shape compatible
|
53 |
+
# alpha = repeat(self.mix_factor, '1 -> b () t () ()', t=t, b=bs)
|
54 |
+
alpha = self.mix_factor.to(image_only_indicator.device)
|
55 |
+
elif self.merge_strategy == "learned":
|
56 |
+
alpha = torch.sigmoid(self.mix_factor.to(image_only_indicator.device))
|
57 |
+
# make shape compatible
|
58 |
+
# alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
|
59 |
+
elif self.merge_strategy == "learned_with_images":
|
60 |
+
assert image_only_indicator is not None, "need image_only_indicator ..."
|
61 |
+
alpha = torch.where(
|
62 |
+
image_only_indicator.bool(),
|
63 |
+
torch.ones(1, 1, device=image_only_indicator.device),
|
64 |
+
rearrange(torch.sigmoid(self.mix_factor.to(image_only_indicator.device)), "... -> ... 1"),
|
65 |
+
)
|
66 |
+
alpha = rearrange(alpha, self.rearrange_pattern)
|
67 |
+
# make shape compatible
|
68 |
+
# alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
|
69 |
+
else:
|
70 |
+
raise NotImplementedError()
|
71 |
+
return alpha
|
72 |
+
|
73 |
+
def forward(
|
74 |
+
self,
|
75 |
+
x_spatial,
|
76 |
+
x_temporal,
|
77 |
+
image_only_indicator=None,
|
78 |
+
) -> torch.Tensor:
|
79 |
+
alpha = self.get_alpha(image_only_indicator)
|
80 |
+
x = (
|
81 |
+
alpha.to(x_spatial.dtype) * x_spatial
|
82 |
+
+ (1.0 - alpha).to(x_spatial.dtype) * x_temporal
|
83 |
+
)
|
84 |
+
return x
|
85 |
+
|
86 |
+
|
87 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
88 |
+
if schedule == "linear":
|
89 |
+
betas = (
|
90 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
91 |
+
)
|
92 |
+
|
93 |
+
elif schedule == "cosine":
|
94 |
+
timesteps = (
|
95 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
96 |
+
)
|
97 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
98 |
+
alphas = torch.cos(alphas).pow(2)
|
99 |
+
alphas = alphas / alphas[0]
|
100 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
101 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
102 |
+
|
103 |
+
elif schedule == "squaredcos_cap_v2": # used for karlo prior
|
104 |
+
# return early
|
105 |
+
return betas_for_alpha_bar(
|
106 |
+
n_timestep,
|
107 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
108 |
+
)
|
109 |
+
|
110 |
+
elif schedule == "sqrt_linear":
|
111 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
112 |
+
elif schedule == "sqrt":
|
113 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
114 |
+
else:
|
115 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
116 |
+
return betas.numpy()
|
117 |
+
|
118 |
+
|
119 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
120 |
+
if ddim_discr_method == 'uniform':
|
121 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
122 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
123 |
+
elif ddim_discr_method == 'quad':
|
124 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
125 |
+
else:
|
126 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
127 |
+
|
128 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
129 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
130 |
+
steps_out = ddim_timesteps + 1
|
131 |
+
if verbose:
|
132 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
133 |
+
return steps_out
|
134 |
+
|
135 |
+
|
136 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
137 |
+
# select alphas for computing the variance schedule
|
138 |
+
alphas = alphacums[ddim_timesteps]
|
139 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
140 |
+
|
141 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
142 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
143 |
+
if verbose:
|
144 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
145 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
146 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
147 |
+
return sigmas, alphas, alphas_prev
|
148 |
+
|
149 |
+
|
150 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
151 |
+
"""
|
152 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
153 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
154 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
155 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
156 |
+
produces the cumulative product of (1-beta) up to that
|
157 |
+
part of the diffusion process.
|
158 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
159 |
+
prevent singularities.
|
160 |
+
"""
|
161 |
+
betas = []
|
162 |
+
for i in range(num_diffusion_timesteps):
|
163 |
+
t1 = i / num_diffusion_timesteps
|
164 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
165 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
166 |
+
return np.array(betas)
|
167 |
+
|
168 |
+
|
169 |
+
def extract_into_tensor(a, t, x_shape):
|
170 |
+
b, *_ = t.shape
|
171 |
+
out = a.gather(-1, t)
|
172 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
173 |
+
|
174 |
+
|
175 |
+
def checkpoint(func, inputs, params, flag):
|
176 |
+
"""
|
177 |
+
Evaluate a function without caching intermediate activations, allowing for
|
178 |
+
reduced memory at the expense of extra compute in the backward pass.
|
179 |
+
:param func: the function to evaluate.
|
180 |
+
:param inputs: the argument sequence to pass to `func`.
|
181 |
+
:param params: a sequence of parameters `func` depends on but does not
|
182 |
+
explicitly take as arguments.
|
183 |
+
:param flag: if False, disable gradient checkpointing.
|
184 |
+
"""
|
185 |
+
if flag:
|
186 |
+
args = tuple(inputs) + tuple(params)
|
187 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
188 |
+
else:
|
189 |
+
return func(*inputs)
|
190 |
+
|
191 |
+
|
192 |
+
class CheckpointFunction(torch.autograd.Function):
|
193 |
+
@staticmethod
|
194 |
+
def forward(ctx, run_function, length, *args):
|
195 |
+
ctx.run_function = run_function
|
196 |
+
ctx.input_tensors = list(args[:length])
|
197 |
+
ctx.input_params = list(args[length:])
|
198 |
+
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
|
199 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
200 |
+
"cache_enabled": torch.is_autocast_cache_enabled()}
|
201 |
+
with torch.no_grad():
|
202 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
203 |
+
return output_tensors
|
204 |
+
|
205 |
+
@staticmethod
|
206 |
+
def backward(ctx, *output_grads):
|
207 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
208 |
+
with torch.enable_grad(), \
|
209 |
+
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
210 |
+
# Fixes a bug where the first op in run_function modifies the
|
211 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
212 |
+
# Tensors.
|
213 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
214 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
215 |
+
input_grads = torch.autograd.grad(
|
216 |
+
output_tensors,
|
217 |
+
ctx.input_tensors + ctx.input_params,
|
218 |
+
output_grads,
|
219 |
+
allow_unused=True,
|
220 |
+
)
|
221 |
+
del ctx.input_tensors
|
222 |
+
del ctx.input_params
|
223 |
+
del output_tensors
|
224 |
+
return (None, None) + input_grads
|
225 |
+
|
226 |
+
|
227 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
228 |
+
"""
|
229 |
+
Create sinusoidal timestep embeddings.
|
230 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
231 |
+
These may be fractional.
|
232 |
+
:param dim: the dimension of the output.
|
233 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
234 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
235 |
+
"""
|
236 |
+
if not repeat_only:
|
237 |
+
half = dim // 2
|
238 |
+
freqs = torch.exp(
|
239 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
|
240 |
+
)
|
241 |
+
args = timesteps[:, None].float() * freqs[None]
|
242 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
243 |
+
if dim % 2:
|
244 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
245 |
+
else:
|
246 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
247 |
+
return embedding
|
248 |
+
|
249 |
+
|
250 |
+
def zero_module(module):
|
251 |
+
"""
|
252 |
+
Zero out the parameters of a module and return it.
|
253 |
+
"""
|
254 |
+
for p in module.parameters():
|
255 |
+
p.detach().zero_()
|
256 |
+
return module
|
257 |
+
|
258 |
+
|
259 |
+
def scale_module(module, scale):
|
260 |
+
"""
|
261 |
+
Scale the parameters of a module and return it.
|
262 |
+
"""
|
263 |
+
for p in module.parameters():
|
264 |
+
p.detach().mul_(scale)
|
265 |
+
return module
|
266 |
+
|
267 |
+
|
268 |
+
def mean_flat(tensor):
|
269 |
+
"""
|
270 |
+
Take the mean over all non-batch dimensions.
|
271 |
+
"""
|
272 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
273 |
+
|
274 |
+
|
275 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
276 |
+
"""
|
277 |
+
Create a 1D, 2D, or 3D average pooling module.
|
278 |
+
"""
|
279 |
+
if dims == 1:
|
280 |
+
return nn.AvgPool1d(*args, **kwargs)
|
281 |
+
elif dims == 2:
|
282 |
+
return nn.AvgPool2d(*args, **kwargs)
|
283 |
+
elif dims == 3:
|
284 |
+
return nn.AvgPool3d(*args, **kwargs)
|
285 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
286 |
+
|
287 |
+
|
288 |
+
class HybridConditioner(nn.Module):
|
289 |
+
|
290 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
291 |
+
super().__init__()
|
292 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
293 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
294 |
+
|
295 |
+
def forward(self, c_concat, c_crossattn):
|
296 |
+
c_concat = self.concat_conditioner(c_concat)
|
297 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
298 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
299 |
+
|
300 |
+
|
301 |
+
def noise_like(shape, device, repeat=False):
|
302 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
303 |
+
noise = lambda: torch.randn(shape, device=device)
|
304 |
+
return repeat_noise() if repeat else noise()
|
ldm_patched/ldm/modules/distributions/__init__.py
ADDED
File without changes
|
ldm_patched/ldm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self):
|
36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
+
return x
|
38 |
+
|
39 |
+
def kl(self, other=None):
|
40 |
+
if self.deterministic:
|
41 |
+
return torch.Tensor([0.])
|
42 |
+
else:
|
43 |
+
if other is None:
|
44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
+
+ self.var - 1.0 - self.logvar,
|
46 |
+
dim=[1, 2, 3])
|
47 |
+
else:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
+
dim=[1, 2, 3])
|
52 |
+
|
53 |
+
def nll(self, sample, dims=[1,2,3]):
|
54 |
+
if self.deterministic:
|
55 |
+
return torch.Tensor([0.])
|
56 |
+
logtwopi = np.log(2.0 * np.pi)
|
57 |
+
return 0.5 * torch.sum(
|
58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def mode(self):
|
62 |
+
return self.mean
|
63 |
+
|
64 |
+
|
65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
+
"""
|
67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
+
Compute the KL divergence between two gaussians.
|
69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
+
scalars, among other use cases.
|
71 |
+
"""
|
72 |
+
tensor = None
|
73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
+
if isinstance(obj, torch.Tensor):
|
75 |
+
tensor = obj
|
76 |
+
break
|
77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
+
|
79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
+
# Tensors, but it does not work for torch.exp().
|
81 |
+
logvar1, logvar2 = [
|
82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
+
for x in (logvar1, logvar2)
|
84 |
+
]
|
85 |
+
|
86 |
+
return 0.5 * (
|
87 |
+
-1.0
|
88 |
+
+ logvar2
|
89 |
+
- logvar1
|
90 |
+
+ torch.exp(logvar1 - logvar2)
|
91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
+
)
|
ldm_patched/ldm/modules/ema.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1, dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
# remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.', '')
|
20 |
+
self.m_name2s_name.update({name: s_name})
|
21 |
+
self.register_buffer(s_name, p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def reset_num_updates(self):
|
26 |
+
del self.num_updates
|
27 |
+
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
|
28 |
+
|
29 |
+
def forward(self, model):
|
30 |
+
decay = self.decay
|
31 |
+
|
32 |
+
if self.num_updates >= 0:
|
33 |
+
self.num_updates += 1
|
34 |
+
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
35 |
+
|
36 |
+
one_minus_decay = 1.0 - decay
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
m_param = dict(model.named_parameters())
|
40 |
+
shadow_params = dict(self.named_buffers())
|
41 |
+
|
42 |
+
for key in m_param:
|
43 |
+
if m_param[key].requires_grad:
|
44 |
+
sname = self.m_name2s_name[key]
|
45 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
46 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
47 |
+
else:
|
48 |
+
assert not key in self.m_name2s_name
|
49 |
+
|
50 |
+
def copy_to(self, model):
|
51 |
+
m_param = dict(model.named_parameters())
|
52 |
+
shadow_params = dict(self.named_buffers())
|
53 |
+
for key in m_param:
|
54 |
+
if m_param[key].requires_grad:
|
55 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
56 |
+
else:
|
57 |
+
assert not key in self.m_name2s_name
|
58 |
+
|
59 |
+
def store(self, parameters):
|
60 |
+
"""
|
61 |
+
Save the current parameters for restoring later.
|
62 |
+
Args:
|
63 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
64 |
+
temporarily stored.
|
65 |
+
"""
|
66 |
+
self.collected_params = [param.clone() for param in parameters]
|
67 |
+
|
68 |
+
def restore(self, parameters):
|
69 |
+
"""
|
70 |
+
Restore the parameters stored with the `store` method.
|
71 |
+
Useful to validate the model with EMA parameters without affecting the
|
72 |
+
original optimization process. Store the parameters before the
|
73 |
+
`copy_to` method. After validation (or model saving), use this to
|
74 |
+
restore the former parameters.
|
75 |
+
Args:
|
76 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
77 |
+
updated with the stored parameters.
|
78 |
+
"""
|
79 |
+
for c_param, param in zip(self.collected_params, parameters):
|
80 |
+
param.data.copy_(c_param.data)
|
ldm_patched/ldm/modules/encoders/__init__.py
ADDED
File without changes
|