Spaces:
Runtime error
Runtime error
Update gradio-app.py
Browse files- gradio-app.py +35 -5
gradio-app.py
CHANGED
@@ -33,12 +33,42 @@ pipe.set_progress_bar_config(disable=True)
|
|
33 |
|
34 |
if TORCH_COMPILE:
|
35 |
#optmode = 'max-autotune'
|
36 |
-
optmode = 'reduce-overhead'
|
37 |
-
pipe.text_encoder = torch.compile(pipe.text_encoder, mode=optmode)
|
38 |
-
pipe.tokenizer = torch.compile(pipe.tokenizer, mode=optmode)
|
39 |
-
pipe.unet = torch.compile(pipe.unet, mode=optmode)
|
40 |
-
pipe.vae = torch.compile(pipe.vae, mode=optmode)
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def predict(prompt1, prompt2, merge_ratio, guidance, steps, sharpness, seed=1231231):
|
44 |
torch.manual_seed(seed)
|
|
|
33 |
|
34 |
if TORCH_COMPILE:
|
35 |
#optmode = 'max-autotune'
|
36 |
+
#optmode = 'reduce-overhead'
|
37 |
+
#pipe.text_encoder = torch.compile(pipe.text_encoder, mode=optmode)
|
38 |
+
#pipe.tokenizer = torch.compile(pipe.tokenizer, mode=optmode)
|
39 |
+
#pipe.unet = torch.compile(pipe.unet, mode=optmode)
|
40 |
+
#pipe.vae = torch.compile(pipe.vae, mode=optmode)
|
41 |
+
doCompile = True
|
42 |
+
if doCompile:
|
43 |
+
config = CompilationConfig.Default()
|
44 |
|
45 |
+
try:
|
46 |
+
import xformers
|
47 |
+
config.enable_xformers = True
|
48 |
+
except ImportError:
|
49 |
+
print('xformers not installed, skipping')
|
50 |
+
try:
|
51 |
+
import triton
|
52 |
+
config.enable_triton = True
|
53 |
+
except ImportError:
|
54 |
+
print('Triton not installed, skipping')
|
55 |
+
|
56 |
+
config.enable_cuda_graph = True
|
57 |
+
config.enable_jit = True
|
58 |
+
config.enable_jit_freeze = True
|
59 |
+
config.trace_scheduler = False#True CHECK THIS AGAIN
|
60 |
+
config.enable_cnn_optimization = True
|
61 |
+
config.preserve_parameters = False
|
62 |
+
config.prefer_lowp_gemm = True
|
63 |
+
config.enable_fused_linear_geglu = True
|
64 |
+
|
65 |
+
torch.jit.optimize_for_inference = True
|
66 |
+
torch.jit.enable_onednn_fusion = True
|
67 |
+
torch.jit.set_fusion_strategy([('STATIC', 1), ('DYNAMIC', 1)])
|
68 |
+
|
69 |
+
for p in pipe.text_encoder.parameters(): p.requires_grad=False
|
70 |
+
for p in pipe.vae.decoder.parameters(): p.requires_grad=False
|
71 |
+
for p in pipe.unet.parameters(): p.requires_grad=False
|
72 |
|
73 |
def predict(prompt1, prompt2, merge_ratio, guidance, steps, sharpness, seed=1231231):
|
74 |
torch.manual_seed(seed)
|