Spaces:
Running
Running
import torch | |
import numpy as np | |
from lipreading.preprocess import * | |
from lipreading.dataset import MyDataset, pad_packed_collate | |
def get_preprocessing_pipelines(modality='video'): | |
# -- preprocess for the video stream | |
preprocessing = {} | |
# -- LRW config | |
if modality == 'video': | |
crop_size = (88, 88) | |
(mean, std) = (0.421, 0.165) | |
# train : | |
preprocessing['train'] = Compose([ # 여러 개의 preprocess를 사용할 때 Compose()를 사용한다. preprocess.py에 설정되어 있음 | |
Normalize(0.0,255.0), | |
RandomCrop(crop_size), | |
HorizontalFlip(0.5), | |
Normalize(mean, std) ]) | |
preprocessing['val'] = Compose([ | |
Normalize( 0.0,255.0 ), | |
CenterCrop(crop_size), | |
Normalize(mean, std) ]) | |
preprocessing['test'] = preprocessing['val'] # test와 val이 같다 | |
elif modality == 'raw_audio': | |
preprocessing['train'] = Compose([ | |
AddNoise( noise=np.load('./data/babbleNoise_resample_16K.npy')), # train에만 노이즈를 추가해 준다. | |
NormalizeUtterance()]) | |
preprocessing['val'] = NormalizeUtterance() # z-score 정규화를 수행 | |
preprocessing['test'] = NormalizeUtterance() | |
return preprocessing | |
def get_data_loaders(args): | |
preprocessing = get_preprocessing_pipelines( args.modality) | |
# create dataset object for each partition | |
dsets = {partition: MyDataset( | |
modality=args.modality, | |
data_partition=partition, | |
data_dir=args.data_dir, | |
label_fp=args.label_path, | |
annonation_direc=args.annonation_direc, | |
preprocessing_func=preprocessing[partition], | |
data_suffix='.npz' | |
) for partition in ['train', 'val', 'test']} | |
dset_loaders = {x: torch.utils.data.DataLoader( | |
dsets[x], | |
batch_size=args.batch_size, | |
shuffle=True, | |
collate_fn=pad_packed_collate, | |
pin_memory=True, | |
num_workers=args.workers, | |
worker_init_fn=np.random.seed(1)) for x in ['train', 'val', 'test']} | |
return dset_loaders | |