aiface's picture
Upload 11 files
907b7f3
raw
history blame
5.1 kB
import math
import torch.nn as nn
import pdb # 파이썬 디버거
# Conv2D (3,3)
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
# Conv2D (1,1) + BatchNorm2D
def downsample_basic_block( inplanes, outplanes, stride ):
return nn.Sequential(
nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(outplanes),
)
# AvgPool2D + Conv2D (1,1) + BatchNorm2D
def downsample_basic_block_v2( inplanes, outplanes, stride ):
return nn.Sequential(
nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False),
nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(outplanes),
)
# 기본 블럭 2D
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, relu_type = 'relu' ):
super(BasicBlock, self).__init__()
# relu_type 변수 값이 'relu','prelu' 인지 확인, 아니면 AssertionError 메시지를 띄움
assert relu_type in ['relu','prelu'] # 원하는 조건의 변수값을 보증하기 위해 사용
self.conv1 = conv3x3(inplanes, planes, stride) # Conv2D (3,3)
self.bn1 = nn.BatchNorm2d(planes) # BatchNorm2D
# type of ReLU is an input option
if relu_type == 'relu': # ReLU
self.relu1 = nn.ReLU(inplace=True)
self.relu2 = nn.ReLU(inplace=True)
elif relu_type == 'prelu': # PReLU
self.relu1 = nn.PReLU(num_parameters=planes)
self.relu2 = nn.PReLU(num_parameters=planes)
else:
raise Exception('relu type not implemented') # 에러 발생시키기
# --------
self.conv2 = conv3x3(planes, planes) # Conv2D (3,3)
self.bn2 = nn.BatchNorm2d(planes) # BatchNorm2D
self.downsample = downsample
self.stride = stride
# 모델이 학습데이터를 입력받아서 forward propagation 진행
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu2(out)
return out
# 레즈넷 2D
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, relu_type = 'relu', gamma_zero = False, avg_pool_downsample = False):
self.inplanes = 64
self.relu_type = relu_type
self.gamma_zero = gamma_zero
self.downsample_block = downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block # AvgPool2D 적용하면 v2 아니면 v1
super(ResNet, self).__init__()
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d(1)
# default init
for m in self.modules():
if isinstance(m, nn.Conv2d): # Conv2D 인스턴스인가
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d): # BatchNrom2D 인스턴스인가
m.weight.data.fill_(1)
m.bias.data.zero_()
#nn.init.ones_(m.weight)
#nn.init.zeros_(m.bias)
if self.gamma_zero:
for m in self.modules():
if isinstance(m, BasicBlock ): # 기본 블럭 인스턴스인가
m.bn2.weight.data.zero_()
# 레이어 생성
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = self.downsample_block( inplanes = self.inplanes,
outplanes = planes * block.expansion,
stride = stride ) # (AvgPool2D) + Conv2D (1,1) + BatchNorm2D
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, relu_type = self.relu_type))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, relu_type = self.relu_type))
return nn.Sequential(*layers) # 설정한 레이어 반환
# 모델이 학습데이터를 입력받아서 forward propagation 진행
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x