aiface's picture
Update app.py
1aa551a
raw
history blame
8.01 kB
import os
import sys
os.system('git clone https://github.com/facebookresearch/av_hubert.git')
os.chdir('/home/user/app/av_hubert')
os.system('git submodule init')
os.system('git submodule update')
os.chdir('/home/user/app/av_hubert/fairseq')
os.system('pip install ./')
os.system('pip install scipy')
os.system('pip install sentencepiece')
os.system('pip install python_speech_features')
os.system('pip install scikit-video')
os.system('pip install transformers')
os.system('pip install gradio==3.12')
os.system('pip install numpy==1.23.3')
os.chdir('/home/user/app')
os.makedirs("./result", exist_ok = True)
os.makedirs("./video/và/test", exist_ok = True)
# sys.path.append('/home/user/app/av_hubert')
sys.path.append('/home/user/app/av_hubert/avhubert')
print(sys.path)
print(os.listdir())
print(sys.argv, type(sys.argv))
sys.argv.append('dummy')
import dlib, cv2, os
import numpy as np
import skvideo
import skvideo.io
from tqdm import tqdm
from preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg
from base64 import b64encode
import torch
import cv2
import tempfile
from argparse import Namespace
import fairseq
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.dataclass.configs import GenerationConfig
from huggingface_hub import hf_hub_download
import gradio as gr
from pytube import YouTube
# os.chdir('/home/user/app/av_hubert/avhubert')
user_dir = "/home/user/app/av_hubert/avhubert"
utils.import_user_module(Namespace(user_dir=user_dir))
data_dir = "/home/user/app/video"
# ckpt_path = hf_hub_download('vumichien/AV-HuBERT', 'model.pt')
face_detector_path = "/home/user/app/mmod_human_face_detector.dat"
face_predictor_path = "/home/user/app/shape_predictor_68_face_landmarks.dat"
mean_face_path = "/home/user/app/20words_mean_face.npy"
mouth_roi_path = "/home/user/app/roi.mp4"
output_video_path = "/home/user/app/video/và/test"
modalities = ["video"]
gen_subset = "test"
gen_cfg = GenerationConfig(beam=20)
# models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
# models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models]
# saved_cfg.task.modalities = modalities
# saved_cfg.task.data = data_dir
# saved_cfg.task.label_dir = data_dir
# task = tasks.setup_task(saved_cfg.task)
# generator = task.build_generator(models, gen_cfg)
def get_youtube(video_url):
yt = YouTube(video_url)
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
print("Success download video")
print(abs_video_path)
return abs_video_path
import dlib, cv2, os
import numpy as np
import skvideo
import skvideo.io
from tqdm import tqdm
from preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg
from IPython.display import HTML
from base64 import b64encode
import numpy as np
def convert_bgr2gray(data):
# np.stack(배열_1, 배열_2, axis=0): 지정한 axis를 완전히 새로운 axis로 생각
return np.stack([cv2.cvtColor(_, cv2.COLOR_BGR2GRAY) for _ in data], axis=0)
def save2npz(filename, data=None):
"""save2npz.
:param filename: str, the fileanme where the data will be saved.
:param data: ndarray, arrays to save to the file.
"""
assert data is not None, "data is {}".format(data)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
np.savez_compressed(filename, data=data)
def detect_landmark(image, detector, predictor):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
face_locations = detector(gray, 1)
coords = None
for (_, face_location) in enumerate(face_locations):
if torch.cuda.is_available():
rect = face_location.rect
else:
rect = face_location
shape = predictor(gray, rect)
coords = np.zeros((68, 2), dtype=np.int32)
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)
return coords
def preprocess_video(input_video_path):
if torch.cuda.is_available():
detector = dlib.cnn_face_detection_model_v1(face_detector_path)
else:
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(face_predictor_path)
STD_SIZE = (256, 256)
mean_face_landmarks = np.load(mean_face_path)
stablePntsIDs = [33, 36, 39, 42, 45]
videogen = skvideo.io.vread(input_video_path)
frames = np.array([frame for frame in videogen])
landmarks = []
for frame in tqdm(frames):
landmark = detect_landmark(frame, detector, predictor)
landmarks.append(landmark)
preprocessed_landmarks = landmarks_interpolate(landmarks)
rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE,
window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96)
rois_gray=convert_bgr2gray(rois)
save2npz(output_video_path, data=rois_gray)
write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg")
return mouth_roi_path
def predict(process_video):
os.chdir('/home/user/app')
return os.system('bash TestVisual.sh')
# ---- Gradio Layout -----
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True)
video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True)
demo = gr.Blocks()
demo.encrypt = False
text_output = gr.Textbox()
with demo:
# gr.Markdown('''
# <div>
# <h1 style='text-align: center'>Speech Recognition from Visual Lip Movement by Audio-Visual Hidden Unit BERT Model (AV-HuBERT)</h1>
# This space uses AV-HuBERT models from <a href='https://github.com/facebookresearch' target='_blank'><b>Meta Research</b></a> to recoginze the speech from Lip Movement 🤗
# <figure>
# <img src="https://huggingface.co/vumichien/AV-HuBERT/resolve/main/lipreading.gif" alt="Audio-Visual Speech Recognition">
# <figcaption> Speech Recognition from visual lip movement
# </figcaption>
# </figure>
# </div>
# ''')
# with gr.Row():
# gr.Markdown('''
# ### Reading Lip movement with youtube link using Avhubert
# ##### Step 1a. Download video from youtube (Note: the length of video should be less than 10 seconds if not it will be cut and the face should be stable for better result)
# ##### Step 1b. You also can upload video directly
# ##### Step 2. Generating landmarks surrounding mouth area
# ##### Step 3. Reading lip movement.
# ''')
with gr.Row():
gr.Markdown('''
### You can test by following examples:
''')
examples = gr.Examples(examples=
[ "https://www.youtube.com/watch?v=ZXVDnuepW2s",
"https://www.youtube.com/watch?v=X8_glJn1B8o",
"https://www.youtube.com/watch?v=80yqL2KzBVw"],
label="Examples", inputs=[youtube_url_in])
with gr.Column():
youtube_url_in.render()
download_youtube_btn = gr.Button("Download Youtube video")
download_youtube_btn.click(get_youtube, [youtube_url_in], [
video_in])
print(video_in)
with gr.Row():
video_in.render()
video_out.render()
with gr.Row():
detect_landmark_btn = gr.Button("Phát hiện mốc/cắt môi")
detect_landmark_btn.click(preprocess_video, [video_in], [
video_out])
predict_btn = gr.Button("Dự đoán")
predict_btn.click(predict, [video_out], [
text_output])
with gr.Row():
# video_lip = gr.Video(label="Audio Visual Video", mirror_webcam=False)
text_output.render()
demo.launch(debug=True)