Spaces:
Sleeping
Sleeping
import math | |
import torch | |
import torch.optim as optim | |
def change_lr_on_optimizer(optimizer, lr): | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
class CosineScheduler: | |
def __init__(self, lr_ori, epochs): | |
self.lr_ori = lr_ori | |
self.epochs = epochs | |
def adjust_lr(self, optimizer, epoch): | |
reduction_ratio = 0.5 * (1 + math.cos(math.pi * epoch / self.epochs)) | |
change_lr_on_optimizer(optimizer, self.lr_ori*reduction_ratio) | |
def get_optimizer(args, optim_policies): | |
# -- define optimizer | |
if args.optimizer == 'adam': | |
optimizer = optim.Adam(optim_policies, lr=args.lr, weight_decay=1e-4) | |
elif args.optimizer == 'adamw': | |
optimizer = optim.AdamW(optim_policies, lr=args.lr, weight_decay=1e-2) | |
elif args.optimizer == 'sgd': | |
optimizer = optim.SGD(optim_policies, lr=args.lr, weight_decay=1e-4, momentum=0.9) | |
else: | |
raise NotImplementedError | |
return optimizer | |