Spaces:
Runtime error
Runtime error
Shafeek Saleem
commited on
Commit
•
aecd27b
1
Parent(s):
3157ae0
test
Browse files
.idea/sonarlint/issuestore/2/6/261359fd9dbbe29d2e8fa924e82dca6f103aeb4b
ADDED
File without changes
|
.idea/sonarlint/issuestore/index.pb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98baa20a68c7cd3b08884b0ec10d7c0e70c67528fd2364fbdef7501776bfd332
|
3 |
+
size 321
|
pages/3_Training the Model.py
CHANGED
@@ -21,7 +21,7 @@ PKL_PATH = 'dataset/database.pkl'
|
|
21 |
|
22 |
def step3_page():
|
23 |
st.header("Training the Model")
|
24 |
-
st.subheader("Face encoding")
|
25 |
st.markdown(
|
26 |
"""
|
27 |
### What is Face Encoding?
|
@@ -59,17 +59,17 @@ def step3_page():
|
|
59 |
face_name = img.split("_")[0]
|
60 |
cols[i].image(os.path.join(img_dir, img), use_column_width=True)
|
61 |
cols[i].write(face_name)
|
62 |
-
st.info("Now it's your turn to train the model! Click on the button below to train the model with your data to generate face encodings!")
|
63 |
if st.button("Train Model"):
|
64 |
-
my_bar = st.progress(0, text="Training....")
|
65 |
if len(images) > 0:
|
66 |
database = get_database(PKL_PATH)
|
67 |
-
for i in range(100):
|
68 |
-
|
69 |
-
|
70 |
-
my_bar.progress(100, text="Successfully Trained!")
|
71 |
-
st.success("Model trained successfully!")
|
72 |
-
st.info("Now, lets generate face encodings for each face in known-face database using the model you just trained!")
|
73 |
my_bar = st.progress(0, text="Generating face encodings...")
|
74 |
for i, img in enumerate(images):
|
75 |
face_image = face_recognition.load_image_file(os.path.join(img_dir, img))
|
@@ -87,7 +87,7 @@ def step3_page():
|
|
87 |
'encoding': my_face_encoding}
|
88 |
with open(PKL_PATH, 'wb') as f:
|
89 |
pkl.dump(database, f)
|
90 |
-
time.sleep(
|
91 |
my_bar.progress(int((i + 1) / len(images) * 100), text="Generating face encodings...")
|
92 |
my_bar.progress(100, text="Successfully encoded all the known faces!")
|
93 |
st.success("Face encoding completed successfully!")
|
|
|
21 |
|
22 |
def step3_page():
|
23 |
st.header("Training the Model")
|
24 |
+
st.subheader("Face encoding and training")
|
25 |
st.markdown(
|
26 |
"""
|
27 |
### What is Face Encoding?
|
|
|
59 |
face_name = img.split("_")[0]
|
60 |
cols[i].image(os.path.join(img_dir, img), use_column_width=True)
|
61 |
cols[i].write(face_name)
|
62 |
+
st.info("Now it's your turn to train the model and generate face encodings! Click on the button below to train the model with your data to generate face encodings!")
|
63 |
if st.button("Train Model"):
|
64 |
+
# my_bar = st.progress(0, text="Training....")
|
65 |
if len(images) > 0:
|
66 |
database = get_database(PKL_PATH)
|
67 |
+
# for i in range(100):
|
68 |
+
# time.sleep(0.1)
|
69 |
+
# my_bar.progress(i, text="Training....")
|
70 |
+
# my_bar.progress(100, text="Successfully Trained!")
|
71 |
+
# st.success("Model trained successfully!")
|
72 |
+
# st.info("Now, lets generate face encodings for each face in known-face database using the model you just trained!")
|
73 |
my_bar = st.progress(0, text="Generating face encodings...")
|
74 |
for i, img in enumerate(images):
|
75 |
face_image = face_recognition.load_image_file(os.path.join(img_dir, img))
|
|
|
87 |
'encoding': my_face_encoding}
|
88 |
with open(PKL_PATH, 'wb') as f:
|
89 |
pkl.dump(database, f)
|
90 |
+
time.sleep(1)
|
91 |
my_bar.progress(int((i + 1) / len(images) * 100), text="Generating face encodings...")
|
92 |
my_bar.progress(100, text="Successfully encoded all the known faces!")
|
93 |
st.success("Face encoding completed successfully!")
|