nvidia_denoiser / app.py
azamat's picture
Init
33e3a91
raw
history blame
3.15 kB
import os
import json
from tqdm import tqdm
from copy import deepcopy
import numpy as np
import gradio as gr
import torch
import random
random.seed(0)
torch.manual_seed(0)
np.random.seed(0)
from scipy.io.wavfile import write as wavwrite
from util import print_size, sampling
from network import CleanUNet
import torchaudio
def load_simple(filename):
audio, _ = torchaudio.load(filename)
return audio
CONFIG = "configs/DNS-large-full.json"
CHECKPOINT = "./exp/DNS-large-high/checkpoint/pretrained.pkl"
# Parse configs. Globals nicer in this case
with open(CONFIG) as f:
data = f.read()
config = json.loads(data)
gen_config = config["gen_config"]
global network_config
network_config = config["network_config"] # to define wavenet
global train_config
train_config = config["train_config"] # train config
global trainset_config
trainset_config = config["trainset_config"] # to read trainset configurations
def denoise(files, ckpt_path):
"""
Denoise audio
Parameters:
output_directory (str): save generated speeches to this path
ckpt_iter (int or 'max'): the pretrained checkpoint to be loaded;
automitically selects the maximum iteration if 'max' is selected
subset (str): training, testing, validation
dump (bool): whether save enhanced (denoised) audio
"""
# setup local experiment path
exp_path = train_config["exp_path"]
print('exp_path:', exp_path)
# load data
loader_config = deepcopy(trainset_config)
loader_config["crop_length_sec"] = 0
# predefine model
net = CleanUNet(**network_config)
print_size(net)
# load checkpoint
checkpoint = torch.load(ckpt_path, map_location='cpu')
net.load_state_dict(checkpoint['model_state_dict'])
net.eval()
# inference
batch_size = 1000000
for file_path in tqdm(files):
file_name = os.path.basename(file_path)
file_dir = os.path.dirname(file_name)
new_file_name = file_name + "_denoised.wav"
noisy_audio = load_simple(file_path)
LENGTH = len(noisy_audio[0].squeeze())
noisy_audio = torch.chunk(noisy_audio, LENGTH // batch_size + 1, dim=1)
all_audio = []
for batch in tqdm(noisy_audio):
with torch.no_grad():
generated_audio = sampling(net, batch)
generated_audio = generated_audio.cpu().numpy().squeeze()
all_audio.append(generated_audio)
all_audio = np.concatenate(all_audio, axis=0)
save_file = os.path.join(file_dir, new_file_name)
print("saved to:", save_file)
wavwrite(save_file, 32000, all_audio.squeeze())
audio = gr.inputs.Audio(label = "Audio to denoise", type = 'filepath')
inputs = [audio, CHECKPOINT]
outputs = gr.outputs.Audio(label = "Denoised audio", type = 'filepath')
title = "Speech Denoising in the Waveform Domain with Self-Attention from Nvidia"
gr.Interface(denoise, inputs, outputs, title=title, enable_queue=True).launch()