aicodingfun's picture
Add application file
35fe345 verified
import gradio as gr
import requests
import random
from geopy.geocoders import Nominatim
import os
from huggingface_hub import InferenceClient
HF_TOKEN = os.environ.get("HF_TOKEN")
client = InferenceClient(api_key=HF_TOKEN)
# 餐點推薦資料庫(根據情緒和天氣)
meal_recommendations = {
"開心": {
"cold": ["小籠包", "燉牛肉", "泡麵", "玉米濃湯"],
"hot": ["雪花冰", "氣水", "涼麵", "西瓜"],
"normal": ["炸雞配汽水", "壽喜燒", "韓式烤肉"]
},
"羞愧": {
"cold": ["抹茶", "清淡的米粥", "唐心蛋"],
"hot": ["蔬菜沙拉", "冷飲", "玉米餅"],
"normal": ["全麥麵包", "藍莓、草莓、橙子", "蒸包子"]
},
"憤怒": {
"cold": ["暖呼呼的火鍋", "熱可可", "麻辣湯"],
"hot": ["冰沙", "涼拌黃瓜", "水果"],
"normal": ["炸雞", "巧克力", "薰衣草茶"]
},
"悲傷": {
"cold": ["雞湯", "清淡的米粥", "餅乾"],
"hot": ["冷湯", "冰棒", "三明治"],
"normal": ["牛排", "雞蛋", "波士頓派"]
},
"忌妒": {
"cold": ["熱狗","拉麵","泡麵"],
"hot": ["蔬菜沙拉", "冷飲",],
"normal": ["奶酥麵包","橙子","pizza"]
},
"恐懼": {
"cold": ["湯泡飯", "泡麵", "湯麵"],
"hot": ["涼麵", "飲料", "冰淇淋"],
"normal": ["爆米花", "薯片", "牛排"]
}
}
# 主功能函式
def recommend_meal(emotion, city):
temp, weather_info = get_weather(city)
if temp is None:
return "Unable to fetch weather details. Please check if the city name is correct.", "", ""
# 根據情緒和氣候選擇餐點
# 請自行完成挑選餐點的邏輯
if temp < 15:
climate = "cold"
elif temp > 28:
climate = "hot"
else:
climate = "normal"
meals = meal_recommendations.get(emotion, {}).get(climate, ["隨意料理"])
meal= random.choice(meals)
# 生成暖心話語
comforting_message = generate_comforting_message(emotion)
recommendation = f"Today's Top Pick: {meal}"
return f"Current Weather:\n{weather_info}", recommendation, comforting_message
def get_weather(city):
geolocator = Nominatim(user_agent="geoapi")
location = geolocator.geocode(city)
if location:
lat, lon = location.latitude, location.longitude
# 使用 Open-Meteo API 取得天氣數據
weather_url = f"https://api.open-meteo.com/v1/forecast?latitude={lat}&longitude={lon}&current_weather=true"
weather_response = requests.get(weather_url)
if weather_response.status_code == 200:
weather_data = weather_response.json()
temp, temp_unit = weather_data['current_weather']['temperature'], weather_data['current_weather_units']['temperature']
windspeed, windspeed_unit = weather_data['current_weather']['windspeed'], weather_data['current_weather_units']['windspeed']
weather_desc = f"{temp}{temp_unit},Wind speed: {windspeed} {windspeed_unit}"
return temp, weather_desc
else:
return None, None
# 生成暖心話語的函式
def generate_comforting_message(emotion):
temperature, top_p = random.uniform(0.6, 0.75), random.uniform(0.7, 1.0)
completion = client.chat.completions.create(
model="mistralai/Mistral-Nemo-Instruct-2407",
messages=[{
"role": "system",
"content": "你是一位善解人意且富有同理心的 AI 助理,專門為人們提供鼓勵和安慰。無論使用者的情緒如何,你都能給予真摯、溫暖且鼓舞人心的話語,讓他們感到被理解和支持。請用溫柔、真誠且富有啟發性的語氣回應,並確保所有回覆都以**繁體中文**撰寫。"
}, {
"role": "user",
"content": f"我現在感到{emotion},請給我一句鼓勵的話。\n"
}],
temperature=temperature,
max_tokens=2048,
top_p=top_p,
)
return completion.choices[0].message.content
# Gradio 介面
with gr.Blocks() as app:
gr.Markdown("## 🌤️🍽️ Meal Matchmaker: Food for Your Mood and Weather! 🍽️🌤️")
with gr.Row():
with gr.Column():
emotion = gr.Dropdown(
["開心", "羞愧", "憤怒", "悲傷", "忌妒", "恐懼"],
label="🎭 Pick Your Mood "
)
with gr.Column():
city = gr.Textbox(label="📍 Enter Your Location (e.g., 台北、Okinawa)")
submit_btn = gr.Button("Serve Me a Meal! ✨")
with gr.Row():
weather_output = gr.Textbox(label="☁️ Weather Check", interactive=False)
meal_output = gr.Textbox(label="🎉 Your Perfect Meal", interactive=False)
message_output = gr.Textbox(label="💖 A Little Boost of Encouragement", interactive=False)
submit_btn.click(
recommend_meal,
inputs=[emotion, city],
outputs=[weather_output, meal_output, message_output]
)
# 啟動應用
app.launch(debug=False)