Spaces:
Sleeping
Sleeping
| from pathlib import Path | |
| NORM_BASE_SUBMISSION = "114be1f0-5a41-43a5-b4e6-7fb683bc01ec" | |
| DIGITS_FOR_VALUES = 3 | |
| DIGITS_FOR_ERRORS = 6 | |
| DIMENSIONS = { | |
| "Segmentation": ['chesapeake', 'sa_crop_type', 'pv4ger_seg', 'cashew', 'neontree', 'nz_cattle'], | |
| "Classification": ['pv4ger', 'so2sat', 'brick_kiln', 'big_earth_net', 'eurosat', 'forestnet'], | |
| "High Resolution": ['chesapeake', 'pv4ger_seg', 'pv4ger', 'nz_cattle', 'neontree' ], | |
| "Medium Resolution": ['brick_kiln', 'big_earth_net', 'eurosat', 'so2sat','sa_crop_type', 'cashew', 'forestnet'], | |
| "RGB only": ['pv4ger_seg','chesapeake', 'nz_cattle', 'neontree', 'pv4ger'], | |
| "Multi-Spectral": [ 'sa_crop_type', 'cashew','so2sat', 'brick_kiln', 'big_earth_net', 'eurosat', 'forestnet'] | |
| } | |
| DIMENSION_INFO = { | |
| "Segmentation": "datasets for pixel-wise semantic segmentation", | |
| "Classification": "single-label and multi-label classification datasets", | |
| "High Resolution": "datasets with resolution <= 1 metre", | |
| "Medium Resolution": "datasets with 10 metres <= resolution <= 15 metres", | |
| "RGB only": "datasets using only Red, Green, and Blue bands", | |
| "Multi-Spectral": " datasets with wavelengths beyond the visible spectrum" | |
| } | |
| DATASETS = [ | |
| 'big_earth_net', 'so2sat', 'brick_kiln', 'forestnet', 'eurosat', 'pv4ger', | |
| 'pv4ger_seg', 'chesapeake', 'cashew', 'sa_crop_type', 'nz_cattle', 'neontree' | |
| ] | |
| DATASET_INFO = { | |
| "Dataset": [item.replace("_", " ").title() for item in DATASETS], | |
| "Description": [ | |
| "land cover dataset with multi-label classification in 10 European countries", | |
| "local climate zone classification dataset with global coverage", | |
| "dataset of brick kilns detected by satellite in Bangladesh", | |
| "classification dataset of known forest loss events paired with driver annotations from expert interpreters", | |
| "land use/land cover classification dataset", | |
| "classification dataset for photo-voltaic systems in Germany", | |
| "segmentation dataset for photo-voltaic systems in Germany", | |
| "high resolution land cover (segmentation) dataset of Chesapeake Bay, US", | |
| "segmentation dataset for cashew plantations in Benin", | |
| "segmentation dataset with ground reference crop type labels and multispectral imagery from Germany and South Africa", | |
| "segmentation dataset for detecting cows from high resolution aerial images in New Zealand", | |
| "segmentation dataset for canopy crown detection and delineation in the US" | |
| ], | |
| "Image Size": ["120 x 120", "32 x 32", "64 x 64", "332 x 332", "64 x 64", "320 x 320", | |
| "320 x 320", "256 x 256", "256 x 256","256 x 256", "500 x 500", "400 x 400"], | |
| "# Classes": [43, 17, 2, 12, 10, 2, 2, 7, 7, 10, 2, 2], | |
| "Train": [20000, 19992, 15063, 6464, 2000, 11814, 3000, 3000, 1350, 3000, 524, 270], | |
| "Val": [1000, 986, 999, 989, 1000, 999, 403, 1000, 400, 1000, 66, 94], | |
| "Test": [1000, 986, 999, 993, 1000, 999, 403, 1000, 50, 1000, 65, 93], | |
| "# Bands": [12, 18, 13, 6, 13, 3, 3, 4, 13, 13, 3, 5], | |
| "RGB Res": [10, 10, 10, 15, 10, 0.1, 0.1, 1.0, 10, 10, 0.1, 0.1], | |
| "Sensors": ["Sentinel-2","Sentinel-2", "Sentinel-2", "Landsat-8", "Sentinel-2", "RGB", | |
| "RGB", "RGBN", "Sentinel-2", "Sentinel-2", "RGB", "RGB"], | |
| "Metric": ["Multilabel_F1_Score", "Overall_Accuracy", "Overall_Accuracy", "Overall_Accuracy", "Overall_Accuracy", "Overall_Accuracy", | |
| "Multiclass_Jaccard_Index", "Multiclass_Jaccard_Index", "Multiclass_Jaccard_Index", "Multiclass_Jaccard_Index", "Multiclass_Jaccard_Index", "Multiclass_Jaccard_Index"], | |
| "Citation": ["Sumbul et al. [2021]", "Zhu et al [2019]", "Lee et al [2021]", "Irvin et al [2020]", "Helber et al [2019]", "Mayer et al [2022]", | |
| "Mayer et al [2022]", "Robinson et al [2019]", "Z. et al [2021]", "link", "Abuaiadah and Switzer [2022]", "Weinstein et al. [2021]" | |
| ], | |
| "Hyperlinks": [ | |
| "https://arxiv.org/abs/2105.07921", | |
| "https://arxiv.org/abs/1912.12171", | |
| "https://www.pnas.org/content/118/17/e2018863118", | |
| "https://arxiv.org/abs/2011.05479", | |
| "https://arxiv.org/abs/1709.00029", | |
| "https://www.sciencedirect.com/science/article/pii/S0306261921016937", | |
| "https://www.sciencedirect.com/science/article/pii/S0306261921016937", | |
| "https://ieeexplore.ieee.org/document/8953207", | |
| "https://arxiv.org/abs/2301.00363", | |
| "https://source.coop/esa/fusion-competition", | |
| "https://doi.org/10.5281/zenodo.5908869", | |
| "https://doi.org/10.1371/journal.pcbi.1009180" | |
| ], | |
| "License": ["CDLA-P-1.0", "CC-BY-4.0", "CC-BY-SA 4.0", "CC-BY-4.0", "MIT", "MIT", "MIT", "CDLA-P-1.0", "CC-BY-4.0", "CC-BY-4.0", "CC-BY-4.0", "CC0 1.0"], | |
| "Dimensions": [", ".join([dim for dim, data_list in DIMENSIONS.items() if dataset in data_list]) for dataset in DATASETS] | |
| } | |
| COLUMN_ORDER = { | |
| "raw": { | |
| "overall_table": ['Overall Mean'] + list(DIMENSIONS.keys()), | |
| "dataset_tables": ["Mean"] , | |
| "dimension_tables": [] | |
| }, | |
| "normalized": { | |
| "overall_table": ['Overall IQM'] + list(DIMENSIONS.keys()), | |
| "dataset_tables": ["IQM"] , | |
| "dimension_tables": [] | |
| }, | |
| "all_tables": ['Model', '# params', 'submission', 'Config Settings'], | |
| } | |
| root = Path(__file__).parent.resolve() | |
| root = "/".join(str(root).split("/")[:-1]) | |
| RESULTS_DIR = f"{root}/results" | |
| MODEL_INFO_FILE = f"{root}/utils/model_info.json" | |
| NORMALIZER_DIR = f"{root}/utils/normalizer" | |
| #for validation of new submissions | |
| NEW_SUBMISSION_FOLDER = f"{root}/new_submission" | |
| CSV_FILE = "results_and_parameters.csv" | |
| JSON_FILE = "additional_info.json" | |
| NEW_SUBMISSION_COLUMN_INFO = { | |
| "string_cols": ['dataset', 'Metric', 'experiment_name', 'partition name', 'backbone', 'decoder','batch_size_selection'], | |
| "integer_cols": ['early_stop_patience', 'n_trials', 'Seed', 'data_percentages', 'batch_size'], | |
| "float_cols": ['weight_decay', 'lr', 'test metric', ] | |
| } | |
| NEW_SUBMISSION_COLUMN_NAMES = [] | |
| for key, value in NEW_SUBMISSION_COLUMN_INFO.items(): | |
| NEW_SUBMISSION_COLUMN_NAMES.extend(value) | |
| JSON_FORMAT = { | |
| "Paper Link": "N/A", | |
| "Code Repository Link ": "N/A", | |
| "License": "N/A", | |
| "Number of HPO trials": "16", | |
| "Additional information about submission": "N/A", | |
| "Comments on new models in submission": "N/A", | |
| "New model info": | |
| [ | |
| { | |
| "model_display_name": "TBD", | |
| "model_size": "TBD", | |
| "unique_backbone_key": "TBD" | |
| } | |
| ] | |
| } |