GenZAI / app.py
CSAle's picture
Releasing App
9109102
raw
history blame
1.64 kB
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python)
# OpenAI Chat completion
import os
from openai import AsyncOpenAI # importing openai for API usage
import chainlit as cl # importing chainlit for our app
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools
from dotenv import load_dotenv
import requests
load_dotenv()
prompt_template = """\
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Gen-Z-ify<|eot_id|><|start_header_id|>user<|end_header_id|>
{english}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
"""
API_URL = "https://nc7q281oard1b1ar.us-east-1.aws.endpoints.huggingface.cloud"
@cl.on_message # marks a function that should be run each time the chatbot receives a message from a user
async def main(message: cl.Message):
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {os.environ['HF_TOKEN']}",
"Content-Type": "application/json"
}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
formatted_prompt = prompt_template.format(english=message.content)
print(formatted_prompt)
output = query({
"inputs": formatted_prompt,
"parameters": {
"return_full_text": False,
"clean_up_tokenization_spaces": False
}
})
msg = cl.Message(content=output[0]["generated_text"])
# Send and close the message stream
await msg.send()