Chris Alexiuk
commited on
Commit
•
3391cce
1
Parent(s):
643f5c3
Update app.py
Browse files
app.py
CHANGED
@@ -56,55 +56,12 @@ async def init():
|
|
56 |
# docsearch = await cl.make_async(Chroma.from_documents)(pdf_data, embeddings)
|
57 |
docsearch = Chroma.from_documents(pdf_data, embeddings)
|
58 |
|
59 |
-
# custom SageMaker Model
|
60 |
-
class Llama2SageMaker(LLM):
|
61 |
-
max_new_tokens: int = 256
|
62 |
-
top_p: float = 0.9
|
63 |
-
temperature: float = 0.1
|
64 |
-
|
65 |
-
@property
|
66 |
-
def _llm_type(self) -> str:
|
67 |
-
return "Llama2SageMaker"
|
68 |
-
|
69 |
-
def _call(
|
70 |
-
self,
|
71 |
-
prompt: str,
|
72 |
-
stop: Optional[List[str]] = None,
|
73 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
74 |
-
) -> str:
|
75 |
-
if stop is not None:
|
76 |
-
raise ValueError("stop kwargs are not permitted.")
|
77 |
-
|
78 |
-
json_body = {
|
79 |
-
"inputs" : [
|
80 |
-
[{"role" : "user", "content" : prompt}]
|
81 |
-
],
|
82 |
-
"parameters" : {
|
83 |
-
"max_new_tokens" : self.max_new_tokens,
|
84 |
-
"top_p" : self.top_p,
|
85 |
-
"temperature" : self.temperature
|
86 |
-
}
|
87 |
-
}
|
88 |
-
|
89 |
-
response = requests.post(model_api_gateway, json=json_body)
|
90 |
-
|
91 |
-
return response.json()[0]["generation"]["content"]
|
92 |
-
|
93 |
-
@property
|
94 |
-
def _identifying_params(self) -> Mapping[str, Any]:
|
95 |
-
"""Get the identifying parameters."""
|
96 |
-
return {
|
97 |
-
"max_new_tokens" : self.max_new_tokens,
|
98 |
-
"top_p" : self.top_p,
|
99 |
-
"temperature" : self.temperature
|
100 |
-
}
|
101 |
-
|
102 |
-
# set our llm to the custom Llama2SageMaker endpoint model
|
103 |
-
llm = Llama2SageMaker()
|
104 |
-
|
105 |
# Create a chain that uses the Chroma vector store
|
106 |
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
107 |
-
|
|
|
|
|
|
|
108 |
chain_type="stuff",
|
109 |
retriever=docsearch.as_retriever(),
|
110 |
return_source_documents=True,
|
|
|
56 |
# docsearch = await cl.make_async(Chroma.from_documents)(pdf_data, embeddings)
|
57 |
docsearch = Chroma.from_documents(pdf_data, embeddings)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Create a chain that uses the Chroma vector store
|
60 |
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
61 |
+
ChatOpenAI(
|
62 |
+
model="gpt-3.5-turbo",
|
63 |
+
temperature=0.0
|
64 |
+
),
|
65 |
chain_type="stuff",
|
66 |
retriever=docsearch.as_retriever(),
|
67 |
return_source_documents=True,
|