vladimir.manuylov
initial commit
bd082dc
from pathlib import Path
from typing import Tuple, Optional, Dict
import numpy as np
import torch
from torch import nn
import lightning.pytorch as pl
import logging
import huggingface_hub
from .ligands.rdkit_utils import validate_smile, calc_chem_desc, tanimoto_smiles
from .ligands.smiles_tokenizer import ChemformerTokenizer
from .noise_schedule import _sample_t, q_xt, _sample_categorical, LogLinearNoise
from .decoder_rope import Decoder_RoPE
logger = logging.getLogger("lightning")
class ModelGenerator(pl.LightningModule):
"""
ProtoBind-Diff model with SMILES and ESM-2 protein encodings.
"""
@staticmethod
def get_exp_dir(
exp_dir: str | None,
output_dir: str,
exp_dir_prefix: str,
split: str
) -> Path:
"""Determines the experiment directory path."""
if exp_dir:
return Path(exp_dir)
return Path(output_dir) / split / exp_dir_prefix
def __init__(self, *args, **kwargs):
"""Initializes the Lightning Module, saves hyperparameters, and configures the model."""
super().__init__()
is_load = kwargs['load']
if not is_load:
self.save_hyperparameters()
self.data_dir = Path(kwargs["data_dir"])
exp_dir = kwargs.get('exp_dir', None)
self.exp_dir = self.get_exp_dir(
exp_dir=exp_dir,
output_dir=kwargs["output_dir"],
exp_dir_prefix=kwargs["exp_dir_prefix"],
split=kwargs["split"]
)
self.configure_model_params(**kwargs)
def configure_model_params(self, **kwargs):
"""Parses keyword arguments to configure the model, tokenizer, and training parameters."""
self.learning_rate = kwargs.pop('learning_rate')
self.weight_decay = float(kwargs.pop('weight_decay'))
# Decoder params for masked diffusion
decoder_params = {
'nhead': kwargs['num_heads_decoder'],
'n_layers': kwargs['num_decoder_layers'],
'hidden_size': kwargs['decoder_hidd_dim'],
'expand_feedforward': kwargs['expand_feedforward'],
'decoder_name': kwargs['decoder_name'],
}
# Tokenizer params
tokenizer_path = kwargs.get('tokenizer_path')
if tokenizer_path:
self.tokenizer = ChemformerTokenizer(filename=tokenizer_path)
else:
self.tokenizer = ChemformerTokenizer(filename=self.data_dir / f"{kwargs['tokenizer_json_name']}.json")
# Masking params
self.noise = LogLinearNoise()
self.mask_index = self.tokenizer.mask_token_id
# Sampler params
self.model_length = 170
self.noise_removal = True
self.nucleus_p = 0.9
self.eta = 0.1
self.sampling_steps = 100
self.time_conditioning = False
self.return_attention = False
self.model = ProtobindMaskedDiffusion(
embedding_dim=kwargs['seq_embedding_dim'],
mask_index=self.mask_index,
vocab_size=self.tokenizer.vocab_size,
decoder_params=decoder_params,
dropout=kwargs['dropout'],
)
self.optimizer = kwargs.get('optimizer', 'Adam')
def generate_mols(self, sequence: Tuple[torch.Tensor, torch.Tensor],
return_attention=False) -> Tuple[np.array, torch.Tensor,np.array]:
"""Generates and validates SMILES strings for a given protein sequence.
This method calls the internal sampler, decodes the generated tokens into
SMILES strings, and filters out any invalid molecules.
Args:
sequence (Tuple[torch.Tensor, torch.Tensor]): The conditioned protein sequence
embedding and its length.
return_attention (bool): Whether to return attention maps from the sampler.
Returns:
Tuple[np.array, torch.Tensor, np.array]: A tuple containing the valid SMILES
strings, corresponding attention maps, and the mask of valid indices.
"""
samples, attention = self._sample(sequence, return_attention=return_attention)
text_samples = self.tokenizer.decode(samples.long())
text_samples = np.array([validate_smile(smile) for smile in text_samples])
mask_invalid = (text_samples != None) & (text_samples != '.') & (text_samples != '')
text_samples = text_samples[mask_invalid]
if attention is not None:
attention = attention[mask_invalid]
return text_samples, attention, mask_invalid
def predict_step(self, batch, batch_idx):
sequence, smiles, seq_id, smi_id = batch
gen_samples, attention, mask_invalid = self.generate_mols(
sequence, return_attention=self.return_attention)
seq_id = seq_id[mask_invalid]
return gen_samples, attention, seq_id
def training_step(self, batch, batch_idx):
return self.common_step(batch, "train", batch_idx)
def validation_step(self, batch, batch_idx, dataloader_idx=None):
# dataloader_idx to predict on several validation sets
return self.common_step(batch, "val", batch_idx, dataloader_idx)
def test_step(self, batch, batch_idx, dataloader_idx=0):
return self.common_step(batch, "test", batch_idx)
def common_step(self, batch, description, batch_idx, dataloader_idx=None):
"""Performs a common training, validation, or test step.
This method takes a batch, applies noise according to the diffusion
timestep, runs the model forward, calculates the loss, and logs metrics.
Args:
batch (Tuple): The input batch from the dataloader.
description (str): The step description (e.g., 'train', 'val').
batch_idx (int): The index of the batch.
Returns:
torch.Tensor: The calculated loss for the batch.
"""
sequence, smiles, seq_id, smi_id = batch
# Get data and apply noise
X, length = smiles
bs = X.shape[0]
X = X.squeeze(-1)
padding_mask = (X != 0).float() # 0 is pad token id
t = _sample_t(X.shape[0], X.device)
sigma, dsigma = self.noise(t)
move_chance = 1 - torch.exp(-sigma[:, None])
xt = q_xt(X, move_chance, self.mask_index)
xt = xt.unsqueeze(dim=2)
smiles_t = (xt, length, None)
pred_x, _ = self.model(sequence, smiles_t, sigma, padding_mask)
total_loss = self.loss_mdlm(X.long(), pred_x, sigma, dsigma, padding_mask=None)
if batch_idx % 50 == 0:
tokens = pred_x.argmax(dim=-1) * padding_mask
true_smiles = self.tokenizer.decode(X.long())
pred_smiles = [smile for smile in self.tokenizer.decode(tokens)]
pred_smiles_valid = [validate_smile(smile) for smile in pred_smiles]
try:
tanimoto = np.asarray([tanimoto_smiles(mol_pred, mol_ref) for mol_pred, mol_ref
in zip(pred_smiles_valid, true_smiles) if mol_pred is not None])
tanimoto_mean = np.mean(tanimoto) if len(tanimoto) > 0 else 0
num_mols_valid = len(tanimoto)
except:
num_mols_valid = 0
tanimoto_mean = 0.0
self.log(f"{description}_tanimoto", tanimoto_mean, prog_bar=True,
on_epoch=True, sync_dist=True)
self.log(f"{description}_perc_of_valid", num_mols_valid / bs * 100, prog_bar=True,
on_epoch=True, sync_dist=True)
self.log(f"{description}_loss", total_loss, prog_bar=True, on_epoch=True,
sync_dist=True, batch_size=bs)
return total_loss
def configure_optimizers(self):
if self.weight_decay > 0.:
optimizer = torch.optim.AdamW(self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
else:
optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)
return optimizer
def loss_mdlm(self, x_0, model_output, sigma, dsigma, padding_mask=None):
"""Loss for SUBS parameterization, continuous time case"""
log_p_theta = torch.gather(
input=model_output,
dim=-1,
index=x_0[:, :, None]).squeeze(-1)
loss = - log_p_theta * (dsigma / torch.expm1(sigma))[:, None]
if padding_mask is not None:
return (loss * padding_mask).sum() / padding_mask.sum()
return loss.mean()
def _sample_prior(self, *batch_dims):
return self.mask_index * torch.ones(*batch_dims, dtype=torch.int64)
def _ddpm_caching_update(self, sequence, x, t, dt, p_x0=None, conf=None,
return_attention=False):
attention = None
if t.ndim > 1:
t = t.squeeze(-1)
sigma_t, _ = self.noise(t)
assert t.ndim == 1
move_chance_t = t[:, None, None]
move_chance_s = (t - dt)[:, None, None]
assert move_chance_t.ndim == 3, move_chance_t.shape
padding_mask = (x != 0).float()
if p_x0 is None:
p_x0, attention = self.model(sequence, (x.unsqueeze(dim=2), None, None), sigma_t,
padding_mask, return_attention=return_attention)
p_x0 = p_x0.exp()
if self.nucleus_p < 1:
sorted_probs, sorted_indices = torch.sort(p_x0, descending=True, dim=-1)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
top_p_mask = cumulative_probs <= self.nucleus_p
top_p_mask[..., 0] = True
nucleus_probs = sorted_probs * top_p_mask
nucleus_probs /= nucleus_probs.sum(dim=-1, keepdim=True)
p_x0 = torch.zeros_like(p_x0).scatter_(-1, sorted_indices, nucleus_probs)
assert move_chance_t.ndim == p_x0.ndim
# Use remdm-cap sampler
alpha_t = (1 - move_chance_t)[0].item()
alpha_s = (1 - move_chance_s)[0].item()
if alpha_t > 0:
sigma = min(self.eta, (1 - alpha_s) / alpha_t)
else:
sigma = self.eta
q_xs = p_x0 * (1 - sigma)
q_xs[..., self.mask_index] = sigma
q_xs_2 = p_x0 * ((alpha_s - (1 - sigma) * alpha_t) / (1 - alpha_t))
q_xs_2[..., self.mask_index] = (1 - alpha_s - sigma * alpha_t) / (1 - alpha_t)
copy_flag = (x != self.mask_index).to(torch.bool)
q_xs = torch.where(copy_flag.unsqueeze(-1), q_xs, q_xs_2)
xs = _sample_categorical(q_xs)
if torch.allclose(xs, x) and not self.time_conditioning:
p_x0_cache = p_x0
else:
p_x0_cache = None
return p_x0_cache, xs, conf, attention
@torch.no_grad()
def _sample(self, sequence, eps=1e-3, return_attention=False):
"""Generate samples from the model"""
num_steps = self.sampling_steps
bs = sequence[0].shape[0]
x = self._sample_prior(bs, self.model_length).to(self.device)
timesteps = torch.linspace(1, eps, num_steps + 1, device=self.device)
dt = (1 - eps) / num_steps
p_x0_cache = None
min_t = timesteps[-1].item()
confident_score = - torch.ones_like(x, device=self.device) * torch.inf
for i in range(num_steps):
t = timesteps[i] * torch.ones(bs, 1, device=self.device)
p_x0_cache, x_next, confident_score, attention = self._ddpm_caching_update(
sequence, x, t, dt, p_x0=p_x0_cache, conf=confident_score,
return_attention=return_attention)
if (not torch.allclose(x_next, x)):
p_x0_cache = None
x = x_next
if self.noise_removal:
t = min_t * torch.ones(bs, 1, device=self.device)
unet_conditioning = self.noise(t)[0]
padding_mask = (x != 0).float()
x, attention = self.model(sequence, (x, None, None), unet_conditioning.squeeze(-1),
padding_mask, return_attention=return_attention)
x = x.argmax(dim=-1)
return x, attention
class ProtobindMaskedDiffusion(nn.Module, huggingface_hub.PyTorchModelHubMixin):
"""The core Protobind-Diff model, which uses a Transformer decoder with RoPE.
This model is designed for a masked diffusion task and supports conditioning
on ESM-2 protein embeddings and generating ligands with a ChemformerTokenizer.
"""
def __init__(self,
embedding_dim: int,
mask_index: int,
vocab_size: int,
decoder_params: Optional[dict] = None,
dropout: float = 0.2,
parametrization_strategy: str = 'subs',
**kwargs) -> None:
"""Initializes the ProtobindMaskedDiffusion model.
Args:
embedding_dim (int): The dimension of the protein sequence embeddings.
mask_index (int): The token ID for the MASK token.
vocab_size (int): The size of the ligand's vocabulary.
decoder_params (Optional[dict]): A dictionary of parameters for the
internal Transformer decoder (e.g., nhead, n_layers).
dropout (float): The dropout rate.
parametrization_strategy (str): The diffusion parameterization to use.
Currently only 'subs' is supported.
"""
super().__init__()
self.neg_infinity = -1000000.0
self.parametrization_strategy = parametrization_strategy
self.decoder_name = decoder_params.pop('decoder_name')
expand_feedforward = decoder_params.pop('expand_feedforward')
self.mask_index = mask_index
# Decoder options
if self.decoder_name == 'decoder_re':
self.decoder = Decoder_RoPE(vocab_size, embedding_dim, expand_feedforward=expand_feedforward,
dropout=dropout, **decoder_params)
else:
raise ValueError(f"Model only supports decoder with rotary embeddings ('decoder_re'), got: {self.decoder_name}")
def forward(self,
sequence: Tuple[torch.Tensor, torch.Tensor],
ligands: Tuple[torch.Tensor, torch.Tensor],
sigma: torch.Tensor,
mask_ligand: torch.Tensor,
return_attention: bool = False) -> torch.Tensor:
"""Performs the main forward pass of the diffusion model.
Args:
sequence (Tuple[torch.Tensor, torch.Tensor]): A tuple of the conditioning
protein sequence embeddings and their lengths.
ligands (Tuple[torch.Tensor, torch.Tensor]): A tuple
containing the noised ligand `xt`and its length.
sigma (torch.Tensor): The diffusion timestep (noise level).
mask_ligand (torch.Tensor): The padding mask for the ligand.
return_attention (bool): If True, returns attention weights from the decoder.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing the final predicted logits
and the attention weights.
"""
sequence, sequence_lengths = sequence
xt, ligand_lengths, _ = ligands
# Decode ligand
ligand_masked = xt.squeeze(-1).long()
ligand_decoded, attention = self.decoder(ligand_masked,
sigma,
sequence,
sequence_lengths,
lig_padding_mask=None,
return_attention=return_attention)
# Apply parametrization
ligand_decoded = self.parametrization(ligand_decoded, xt)
return ligand_decoded, attention
def parametrization(self, logits, xt):
"""Applies the chosen parameterization to the model's output logits.
The 'subs' strategy modifies the logits to represent the probability
p(x_{t-1}|x_t), enforcing that unmasked tokens remain unchanged.
Args:
logits (torch.Tensor): The raw output logits from the decoder.
xt (torch.Tensor): The noised input ligand at timestep t.
Returns:
torch.Tensor: The re-parameterized logits.
"""
if self.parametrization_strategy == 'subs':
# log prob at the mask index = - infinity
logits[:, :, self.mask_index] += self.neg_infinity
# Normalize the logits
logits = logits - torch.logsumexp(logits, dim=-1, keepdim=True)
# Apply updates for unmasked tokens
xt = xt.squeeze(-1)
unmasked_indices = (xt != self.mask_index)
logits[unmasked_indices] = self.neg_infinity
logits[unmasked_indices, xt[unmasked_indices].long()] = 0
else:
raise NotImplementedError(f'Parametrization strategy {self.parametrization_strategy} not implemented')
return logits