Spaces:
Build error
Build error
import torch | |
import clip | |
from PIL import Image | |
import gradio as gr | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model, preprocess = clip.load("ViT-B/32", device=device) | |
def hotornot(image, gender): | |
image = Image.fromarray(image.astype("uint8"), "RGB") | |
image = preprocess(image).unsqueeze(0).to(device) | |
positive_terms = [f'a hot {gender}', f'a beautiful {gender}', f'an attractive {gender}'] | |
negative_terms = [f'a gross {gender}', f'an ugly {gender}', f'a hideous {gender}'] | |
pairs = list(zip(positive_terms, negative_terms)) | |
def evaluate(terms): | |
text = clip.tokenize(terms).to(device) | |
with torch.no_grad(): | |
logits_per_image, logits_per_text = model(image, text) | |
probs = logits_per_image.softmax(dim=-1).cpu().numpy() | |
return probs[0] | |
probs = [evaluate(pair) for pair in pairs] | |
positive_probs = [prob[0] for prob in probs] | |
negative_probs = [prob[1] for prob in probs] | |
hotness_score = round((probs[0][0] - probs[0][1] + 1) * 50, 2) | |
beauty_score = round((probs[1][0] - probs[1][1] + 1) * 50, 2) | |
attractiveness_score = round((probs[2][0] - probs[2][1] + 1) * 50, 2) | |
hot_score = sum(positive_probs)/len(positive_probs) | |
ugly_score = sum(negative_probs)/len(negative_probs) | |
composite = ((hot_score - ugly_score)+1) * 50 | |
composite = round(composite, 2) | |
return composite, hotness_score, beauty_score, attractiveness_score | |
iface = gr.Interface( | |
fn=hotornot, | |
inputs=[ | |
gr.inputs.Image(label="Image"), | |
gr.inputs.Dropdown( | |
[ | |
'person', 'man', 'woman' | |
], | |
default='person', | |
) | |
], | |
outputs=[ | |
gr.Textbox(label="Total Hot or Not™ Score"), | |
gr.Textbox(label="Hotness Score"), | |
gr.Textbox(label="Beauty Score"), | |
gr.Textbox(label="Attractiveness Score"), | |
], | |
title="Hot or Not", | |
description="A simple hot or not app using OpenAI's CLIP model.", | |
) | |
iface.launch() | |