Spaces:
Sleeping
Sleeping
import numpy as np | |
import transformers | |
import streamlit as st | |
from streamlit import session_state | |
import json | |
import pandas as pd | |
from transformers import BertTokenizer, BertModel | |
from torch import cuda | |
import numpy | |
import emoji | |
import string | |
import bs4 | |
import nltk | |
from nltk.corpus import stopwords | |
from nltk.stem import PorterStemmer # PorterStemmer LancasterStemmer | |
from nltk.stem import WordNetLemmatizer | |
import re | |
stemmer = PorterStemmer() | |
# uncomment this when run first time | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
nltk.download('stopwords') | |
lemmatizer = WordNetLemmatizer() | |
from transformers import pipeline | |
stopwords = nltk.corpus.stopwords.words('english') | |
classifier = pipeline("text-classification", model="dsmsb/16class_12k_newtest1618_xlm_roberta_base_27nov_v2_8epoch") | |
def pre_processing_str_esg(df_col): | |
df_col = df_col.lower() | |
#defining the function to remove punctuation | |
def remove_punctuation(text): | |
punctuationfree="".join([i for i in text if i not in string.punctuation]) | |
return punctuationfree | |
#storing the puntuation free text | |
df_col= remove_punctuation(df_col) | |
df_col = re.sub(r"http\S+", " ", df_col) | |
def remove_stopwords(text): | |
return " ".join([word for word in str(text).split() if word not in stopwords]) | |
#applying the function | |
df_col = remove_stopwords(df_col) | |
df_col = re.sub('[%s]' % re.escape(string.punctuation), ' ' , df_col) | |
df_col = df_col.replace("¶", "") | |
df_col = df_col.replace("§", "") | |
df_col = df_col.replace('“', ' ') | |
df_col = df_col.replace('”', ' ') | |
df_col = df_col.replace('-', ' ') | |
REPLACE_BY_SPACE_RE = re.compile('[/(){}\[\]\|@,;]') | |
BAD_SYMBOLS_RE = re.compile('[^0-9a-z #+_]') | |
df_col = REPLACE_BY_SPACE_RE.sub(' ',df_col) | |
df_col = BAD_SYMBOLS_RE.sub(' ',df_col) | |
# df_col = re.sub('W*dw*','',df_col) | |
df_col = re.sub('[0-9]+', ' ', df_col) | |
df_col = re.sub(' ', ' ', df_col) | |
def remove_emoji(string): | |
emoji_pattern = re.compile("[" | |
u"\U0001F600-\U0001F64F" # emoticons | |
u"\U0001F300-\U0001F5FF" # symbols & pictographs | |
u"\U0001F680-\U0001F6FF" # transport & map symbols | |
u"\U0001F1E0-\U0001F1FF" # flags (iOS) | |
u"\U00002702-\U000027B0" | |
u"\U000024C2-\U0001F251" | |
"]+", flags=re.UNICODE) | |
return emoji_pattern.sub(r'', string) | |
df_col = remove_emoji(df_col) | |
return df_col | |
def pre_processing_str(df_col): | |
# df_col = df_col.lower() | |
if len(df_col.split()) >= 70: | |
return pre_processing_str_esg(df_col) | |
else: | |
df_col = df_col.replace('#', '') | |
df_col = df_col.replace('!', '') | |
df_col = re.sub(r"http\S+", " ", df_col) | |
df_col = re.sub('[0-9]+', ' ', df_col) | |
df_col = re.sub(' ', ' ', df_col) | |
def remove_emojis(text): | |
return emoji.replace_emoji(text) | |
df_col = remove_emojis(df_col) | |
df_col = re.sub(r"(?:\@|https?\://)\S+", "", df_col) | |
df_col = re.sub(r"[^\x20-\x7E]+", "", df_col) | |
df_col = df_col.strip() | |
return df_col | |
# start for the api steps make sure name should me match with file name and application = Flask(__name__). 'application.py and application | |
def process(text): | |
text = pre_processing_str(text) | |
try: | |
if len(text) != 0: | |
results = classifier(text, top_k = 2) | |
else: | |
results = 'No Text' | |
return {'output_16':results} | |
except: | |
return {'output_16':'something went wrong'} | |
st.set_page_config(page_title="core_risk", page_icon="📈") | |
if 'topic_class' not in session_state: | |
session_state['topic_class']= "" | |
st.title("Core Risk Category Classifier") | |
text= st.text_area(label= "Please write the text bellow", | |
placeholder="What does the text say?") | |
def classify(text): | |
session_state['topic_class'] = process(text) | |
st.text_area("result", value=session_state['topic_class']) | |
st.button("Classify", on_click=classify, args=[text]) | |