Spaces:
Sleeping
Sleeping
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.llms import HuggingFaceHub | |
from html_template import css, bot_template, user_template | |
def get_pdf_text(pdf_docs): | |
text = '' | |
for pdf in pdf_docs: | |
reader = PdfReader(pdf) | |
for page in reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chuks(raw_text): | |
text_splitter = CharacterTextSplitter( | |
separator = '\n', | |
chunk_size = 1000, | |
chunk_overlap = 200, | |
length_function = len | |
) | |
chunks = text_splitter.split_text(raw_text) | |
return chunks | |
def get_vector_store(text_chunks): | |
embeddings = OpenAIEmbeddings() | |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
vector_store = FAISS.from_texts(text_chunks, embeddings) | |
return vector_store | |
def get_conversation_chain(vectorstore): | |
llm = ChatOpenAI(temperature=0.2) | |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.2, "max_length":512}) | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory, | |
# retriever_kwargs={"k": 1}, | |
) | |
return conversation_chain | |
def handle_user_question(user_question): | |
response = st.session_state.conversation({"question": user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title='Chat with your PDFs', page_icon='π', layout='wide') | |
st.header('Chat with multiple PDFs :books:') | |
# st.write(bot_template.replace('{{MSG}}', 'hello user'), unsafe_allow_html=True) | |
# st.write(user_template.replace('{{MSG}}', 'hello bot'), unsafe_allow_html=True) | |
st.write(css, unsafe_allow_html=True) | |
if 'conversation' not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
with st.sidebar: | |
st.subheader('Document') | |
pdf_docs = st.file_uploader('Upload your PDFs here and click on Process', accept_multiple_files=True) | |
if st.button('Process'): | |
with st.spinner('Processing...'): | |
# get pdf text | |
raw_text = get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = get_text_chuks(raw_text) | |
# create vector store | |
vectorstore = get_vector_store(text_chunks) | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
user_question = st.text_input('Ask a question about your pdf') | |
if user_question: | |
handle_user_question(user_question) | |
if __name__ == '__main__': | |
main() | |