Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,32 @@
|
|
1 |
import re
|
2 |
import os
|
3 |
import panel as pn
|
4 |
-
from mistralai.async_client import MistralAsyncClient
|
5 |
-
from mistralai.models.chat_completion import ChatMessage
|
6 |
from panel.io.mime_render import exec_with_return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
pn.extension("codeeditor", sizing_mode="stretch_width")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
)
|
23 |
|
24 |
USER_CONTENT_FORMAT = """
|
@@ -31,68 +39,93 @@ Code:
|
|
31 |
```
|
32 |
""".strip()
|
33 |
|
34 |
-
|
35 |
-
import
|
36 |
-
|
37 |
-
|
38 |
-
fig = plt.figure()
|
39 |
-
ax = plt.axes(title="Plot Title", xlabel="X Label", ylabel="Y Label")
|
40 |
-
|
41 |
-
x = np.linspace(1, 10)
|
42 |
-
y = np.sin(x)
|
43 |
-
z = np.cos(x)
|
44 |
-
c = np.log(x)
|
45 |
-
|
46 |
-
ax.plot(x, y, c="blue", label="sin")
|
47 |
-
ax.plot(x, z, c="orange", label="cos")
|
48 |
-
|
49 |
-
img = ax.scatter(x, c, c=c, label="log")
|
50 |
-
plt.colorbar(img, label="Colorbar")
|
51 |
-
plt.legend()
|
52 |
|
53 |
-
|
54 |
-
|
55 |
""".strip()
|
56 |
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
return
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
|
70 |
# new user contents
|
71 |
user_content = USER_CONTENT_FORMAT.format(
|
72 |
content=content, code=code_editor.value
|
73 |
)
|
74 |
-
messages.append(ChatMessage(role="user", content=user_content))
|
75 |
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
|
83 |
# extract code
|
84 |
-
|
85 |
-
if
|
86 |
-
llm_code
|
87 |
-
|
|
|
|
|
88 |
|
89 |
|
90 |
def update_plot(event):
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
# instantiate widgets and panes
|
95 |
-
api_key_input = pn.widgets.PasswordInput(
|
|
|
|
|
|
|
|
|
|
|
96 |
chat_interface = pn.chat.ChatInterface(
|
97 |
callback=callback,
|
98 |
show_clear=False,
|
@@ -105,23 +138,24 @@ chat_interface = pn.chat.ChatInterface(
|
|
105 |
height=650,
|
106 |
callback_exception="verbose",
|
107 |
)
|
108 |
-
|
109 |
-
exec_with_return(
|
110 |
sizing_mode="stretch_both",
|
111 |
-
tight=True,
|
112 |
)
|
113 |
code_editor = pn.widgets.CodeEditor(
|
114 |
-
value=
|
115 |
language="python",
|
116 |
sizing_mode="stretch_both",
|
117 |
)
|
118 |
|
119 |
# watch for code changes
|
|
|
120 |
code_editor.param.watch(update_plot, "value")
|
|
|
121 |
|
122 |
# lay them out
|
123 |
tabs = pn.Tabs(
|
124 |
-
("Plot",
|
125 |
("Code", code_editor),
|
126 |
)
|
127 |
|
|
|
1 |
import re
|
2 |
import os
|
3 |
import panel as pn
|
|
|
|
|
4 |
from panel.io.mime_render import exec_with_return
|
5 |
+
from llama_index import (
|
6 |
+
VectorStoreIndex,
|
7 |
+
SimpleDirectoryReader,
|
8 |
+
ServiceContext,
|
9 |
+
StorageContext,
|
10 |
+
load_index_from_storage,
|
11 |
+
)
|
12 |
+
from llama_index.chat_engine import ContextChatEngine
|
13 |
+
from llama_index.embeddings import OpenAIEmbedding
|
14 |
+
from llama_index.llms import OpenAI
|
15 |
|
16 |
pn.extension("codeeditor", sizing_mode="stretch_width")
|
17 |
|
18 |
+
SYSTEM_PROMPT = (
|
19 |
+
"You are a renowned data visualization expert "
|
20 |
+
"with a strong background in hvplot and holoviews. "
|
21 |
+
"Note, hvplot is built on top of holoviews; so "
|
22 |
+
"anything you can do with holoviews, you can do "
|
23 |
+
"with hvplot, but prioritize hvplot kwargs "
|
24 |
+
"first as its simpler. Your primary goal is "
|
25 |
+
"to assist the user in edit the code based on user request "
|
26 |
+
"using best practices. Simply provide code "
|
27 |
+
"in code fences (```python). You absolutely "
|
28 |
+
"must have `hvplot_obj` as the last line of code. FYI,"
|
29 |
+
"Data columns: ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']"
|
30 |
)
|
31 |
|
32 |
USER_CONTENT_FORMAT = """
|
|
|
39 |
```
|
40 |
""".strip()
|
41 |
|
42 |
+
DEFAULT_HVPLOT = """
|
43 |
+
import hvplot.pandas
|
44 |
+
from bokeh.sampledata.iris import flowers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
hvplot_obj = flowers.hvplot(x='petal_length', y='petal_width', by='species', kind='scatter')
|
47 |
+
hvplot_obj
|
48 |
""".strip()
|
49 |
|
50 |
|
51 |
+
def init_llm(event):
|
52 |
+
api_key = event.new
|
53 |
+
if not api_key:
|
54 |
+
api_key = os.environ.get("OPENAI_API_KEY")
|
55 |
+
if not api_key:
|
56 |
return
|
57 |
+
pn.state.cache["llm"] = OpenAI(api_key=api_key)
|
58 |
+
|
59 |
+
|
60 |
+
def create_chat_engine(llm):
|
61 |
+
try:
|
62 |
+
storage_context = StorageContext.from_defaults(persist_dir="persisted/")
|
63 |
+
index = load_index_from_storage(storage_context=storage_context)
|
64 |
+
except Exception as exc:
|
65 |
+
embed_model = OpenAIEmbedding()
|
66 |
+
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
|
67 |
+
documents = SimpleDirectoryReader(
|
68 |
+
input_dir="hvplot_docs", required_exts=[".md"], recursive=True
|
69 |
+
).load_data()
|
70 |
+
index = VectorStoreIndex.from_documents(
|
71 |
+
documents, service_context=service_context, show_progress=True
|
72 |
+
)
|
73 |
+
index.storage_context.persist("persisted/")
|
74 |
+
|
75 |
+
retriever = index.as_retriever()
|
76 |
+
chat_engine = ContextChatEngine.from_defaults(
|
77 |
+
system_prompt=SYSTEM_PROMPT,
|
78 |
+
retriever=retriever,
|
79 |
+
verbose=True,
|
80 |
+
)
|
81 |
+
return chat_engine
|
82 |
+
|
83 |
|
84 |
+
def callback(content: str, user: str, instance: pn.chat.ChatInterface):
|
85 |
+
if "llm" not in pn.state.cache:
|
86 |
+
yield "Need to set OpenAI API key first"
|
87 |
+
return
|
88 |
|
89 |
+
if "engine" not in pn.state.cache:
|
90 |
+
engine = pn.state.cache["engine"] = create_chat_engine(pn.state.cache["llm"])
|
91 |
+
else:
|
92 |
+
engine = pn.state.cache["engine"]
|
93 |
|
94 |
# new user contents
|
95 |
user_content = USER_CONTENT_FORMAT.format(
|
96 |
content=content, code=code_editor.value
|
97 |
)
|
|
|
98 |
|
99 |
+
# send user content to chat engine
|
100 |
+
agent_response = engine.stream_chat(user_content)
|
101 |
+
|
102 |
+
message = None
|
103 |
+
for chunk in agent_response.response_gen:
|
104 |
+
message = instance.stream(chunk, message=message, user="OpenAI")
|
105 |
|
106 |
# extract code
|
107 |
+
llm_matches = re.findall(r"```python\n(.*)\n```", message.object, re.DOTALL)
|
108 |
+
if llm_matches:
|
109 |
+
llm_code = llm_matches[0]
|
110 |
+
if llm_code.splitlines()[-1].strip() != "hvplot_obj":
|
111 |
+
llm_code += "\nhvplot_obj"
|
112 |
+
code_editor.value = llm_code
|
113 |
|
114 |
|
115 |
def update_plot(event):
|
116 |
+
try:
|
117 |
+
hvplot_pane.object = exec_with_return(event.new)
|
118 |
+
except Exception as exc:
|
119 |
+
chat_interface.send(f"Fix this error: {exc}")
|
120 |
|
121 |
|
122 |
# instantiate widgets and panes
|
123 |
+
api_key_input = pn.widgets.PasswordInput(
|
124 |
+
placeholder=(
|
125 |
+
"Currently subsidized by Andrew, "
|
126 |
+
"but you can also pass your own OpenAI API Key"
|
127 |
+
)
|
128 |
+
)
|
129 |
chat_interface = pn.chat.ChatInterface(
|
130 |
callback=callback,
|
131 |
show_clear=False,
|
|
|
138 |
height=650,
|
139 |
callback_exception="verbose",
|
140 |
)
|
141 |
+
hvplot_pane = pn.pane.HoloViews(
|
142 |
+
exec_with_return(DEFAULT_HVPLOT),
|
143 |
sizing_mode="stretch_both",
|
|
|
144 |
)
|
145 |
code_editor = pn.widgets.CodeEditor(
|
146 |
+
value=DEFAULT_HVPLOT,
|
147 |
language="python",
|
148 |
sizing_mode="stretch_both",
|
149 |
)
|
150 |
|
151 |
# watch for code changes
|
152 |
+
api_key_input.param.watch(init_llm, "value")
|
153 |
code_editor.param.watch(update_plot, "value")
|
154 |
+
api_key_input.param.trigger("value")
|
155 |
|
156 |
# lay them out
|
157 |
tabs = pn.Tabs(
|
158 |
+
("Plot", hvplot_pane),
|
159 |
("Code", code_editor),
|
160 |
)
|
161 |
|