Spaces:
Build error
Build error
import gradio as gr | |
import time | |
import urllib.request | |
from pathlib import Path | |
import os | |
import torch | |
import scipy.io.wavfile | |
from espnet2.bin.tts_inference import Text2Speech | |
from espnet2.utils.types import str_or_none | |
from parallel_wavegan.utils import download_pretrained_model | |
gos_text2speech = Text2Speech.from_pretrained( | |
model_tag="https://huggingface.co/ahnafsamin/FastSpeech2-gronings/resolve/main/tts_train_fastspeech2_raw_char_tacotron_train.loss.ave.zip", | |
vocoder_tag="parallel_wavegan/ljspeech_parallel_wavegan.v3" | |
) | |
def inference(text,lang): | |
with torch.no_grad(): | |
if lang == "gronings": | |
wav = gos_text2speech(text)["wav"] | |
scipy.io.wavfile.write("out.wav", gos_text2speech.fs , wav.view(-1).cpu().numpy()) | |
return "out.wav", "out.wav" | |
title = "GroTTS" | |
examples = [ | |
['Ze gingen mit klas noar waddendiek, over en deur bragel lopen.', 'gronings'] | |
] | |
gr.Interface( | |
inference, | |
[gr.inputs.Textbox(label="input text", lines=3), gr.inputs.Radio(choices=["gronings"], type="value", default="gronings", label="language")], | |
[gr.outputs.Audio(type="file", label="Output"), gr.outputs.File()], | |
title=title, | |
examples=examples | |
).launch(enable_queue=True) | |