ahmetyaylalioglu commited on
Commit
d8210e8
1 Parent(s): 649e372

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +34 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
3
+ import torch
4
+
5
+ # Load the model and tokenizer
6
+ model_name = "ahmetyaylalioglu/text-emotion-classifier" # Replace with your actual model path
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+
10
+ # Function to predict emotion
11
+ def predict_emotion(text):
12
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
13
+ with torch.no_grad():
14
+ outputs = model(**inputs)
15
+
16
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
17
+ prediction = torch.argmax(probabilities, dim=-1).item()
18
+
19
+ emotion = model.config.id2label[prediction]
20
+ confidence = probabilities[0][prediction].item()
21
+
22
+ return f"Emotion: {emotion}\nConfidence: {confidence:.2f}"
23
+
24
+ # Create Gradio interface
25
+ iface = gr.Interface(
26
+ fn=predict_emotion,
27
+ inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
28
+ outputs="text",
29
+ title="Emotion Classifier",
30
+ description="Enter some text and click 'Submit' to predict the emotion."
31
+ )
32
+
33
+ # Launch the app
34
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ transformers
3
+ torch