ahmedxeno's picture
Update app.py
def7dd8
import gradio as gr
import tensorflow as tf
import tensorflow.keras
import matplotlib.pyplot as plt
import cv2
import tensorflow_io as tfio
import numpy as np
loaded_model = tf.keras.models.load_model( 'kidney2.h5')
def take_img(img):
resize = tf.image.resize(img, (224,224))
gray = tfio.experimental.color.bgr_to_rgb(resize)
yhat = loaded_model.predict(np.expand_dims(gray/255, 0))
label_names = {
"1": "Cyst",
"2": "Normal",
"3": "Stone",
"4": "Tumor"
}
classes_x=np.argmax(yhat,axis=1)
a = classes_x[0]
input_value = a + 1
input_str = str(input_value)
predicted_label = label_names[input_str]
q= yhat[0][0]
w = yhat[0][1]
e = yhat[0][2]
r = yhat[0][3]
q = str(q)
w = str(w)
e = str(e)
r = str(r)
return {'cryst' : q ,'Normal' : w ,'Stone' : e ,'Tumour' : r }
image = gr.inputs.Image(shape=(224,224))
label = gr.outputs.Label('ok')
gr.Interface(fn=take_img, inputs=image, outputs="label",interpretation='default').launch(debug='True')