scene-sketch-seg / models /our_model.py
ahmedbrs's picture
first
254fdf2
from collections import OrderedDict
from typing import Tuple, Union
import math
# import torchvision
import torch
import numpy as np
import torch
from torch import nn
# from torch.nn.modules.utils import _pair
from torch.nn import Dropout
from functools import reduce
from operator import mul
# from vpt.src.utils import logging
from .ca import Cross_Attention
# logger = logging.get_logger("visual_prompt")
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu2 = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu3 = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu1(self.bn1(self.conv1(x)))
out = self.relu2(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu3(out)
return out
# implement attention module for v-v self-attention
class Attention(nn.Module):
def __init__(self, out_dim, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., settings=''):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(out_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.settings = settings
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
# original self-attention for the original path
attn_ori = (q @ k.transpose(-2, -1)) * self.scale
attn_ori = attn_ori.softmax(dim=-1)
attn_ori = self.attn_drop(attn_ori)
# replace k & q by v
k = v
q = k
# resnets have only one self-attention, norm and larger scale perform better
if self.settings == 'resnet':
k = k / (k.norm(p=2, dim=-1, keepdim=True) + 1e-6)
q = k
scale = self.scale * 8
else:
scale = self.scale
# self-attention, higher temperate for resnets performs better
attn = (q @ k.transpose(-2, -1)) * scale
attn = (attn).softmax(dim=-1)
attn = self.attn_drop(attn)
x_ori = (attn_ori @ v).transpose(1, 2).reshape(B, N, C)
x = (attn @ v).transpose(1, 2).reshape(B, N, C) # clip_surgery
#x = v.transpose(1, 2).reshape(B, N, C) # mask_clip
x = self.proj_drop(self.proj(x))
x_ori = self.proj_drop(self.proj(x_ori))
return [x, x_ori]
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
self.attn = None
self.embed_dim = embed_dim
self.num_heads = num_heads
self.output_dim = output_dim
def forward(self, x):
# reform transformer layer after init and load weights, using v only
if self.attn == None:
self.attn = Attention(self.output_dim, self.embed_dim, self.num_heads, True)
self.attn.qkv.weight = torch.nn.Parameter(torch.cat([self.v_proj.weight, self.v_proj.weight, self.v_proj.weight], 0))
self.attn.qkv.bias = torch.nn.Parameter(torch.cat([self.v_proj.bias, self.v_proj.bias, self.v_proj.bias]))
self.attn.proj.weight = self.c_proj.weight
self.attn.proj.bias = self.c_proj.bias
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
side = int((self.positional_embedding.shape[0] - 1) ** 0.5)
new_side = int((x.shape[0] - 1) ** 0.5)
# update the position embedding during inference for varied input size
if side != new_side:
new_pos = self.positional_embedding[1:, :].reshape(-1, side, side, x.shape[-1]).permute(0, 3, 1, 2)
new_pos = torch.nn.functional.interpolate(new_pos, (new_side, new_side), mode='bilinear')
new_pos = new_pos.reshape(-1, x.shape[-1], new_side * new_side).transpose(1, 2)
self.positional_embedding.data = torch.cat([self.positional_embedding[:1, :], new_pos[0]], 0)
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, x_ori = self.attn(x.transpose(0, 1))
# cls token from the original path, and img tokens from the new path
x[:, 0, :] = x_ori[:, 0, :]
return x
class ModifiedResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
super().__init__()
self.output_dim = output_dim
self.input_resolution = input_resolution
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.relu3 = nn.ReLU(inplace=True)
self.avgpool = nn.AvgPool2d(2)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
def stem(x):
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
x = self.avgpool(x)
return x
x = x.type(self.conv1.weight.dtype)
x = stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.attnpool(x)
# shape BNC
return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.clone().type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.attn_probs = None
self.attn_grad = None
self.attn_keys = None
def set_attn_probs(self, attn_probs):
self.attn_probs = attn_probs
def set_attn_keys(self, attn_keys):
self.attn_keys = attn_keys
def set_attn_grad(self, attn_grad):
self.attn_grad = attn_grad
def attention(self, x: torch.Tensor, attn_mask: torch.Tensor = None, mode="train"):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
if isinstance(self.attn, Attention):
x = x.transpose(0, 1)
x, x_ori = self.attn(x)
return [x.transpose(0, 1), x_ori.transpose(0, 1)]
else:
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x, attn_mask: torch.Tensor = None, mode="train"):
# dual paths for blocks deeper than "d"
if isinstance(self.attn, Attention):
if isinstance(x, list):
x, x_ori = x
x_res = self.attention(self.ln_1(x_ori))
x_res, x_ori_res = x_res
x_ori += x_ori_res
x_ori = x_ori + self.mlp(self.ln_2(x_ori))
x += x_res # skip ffn for the new path
return [x, x_ori]
# start of dual path
else:
x_res = self.attention(self.ln_1(x))
if isinstance(x_res, list):
x_res, x_ori_res = x_res
x_ori = x + x_ori_res
x_ori = x_ori + self.mlp(self.ln_2(x_ori))
x += x_res
return [x, x_ori]
# single path before "d"
else:
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, need_weights: bool = False):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for i in range(layers)])
self.ca = Cross_Attention(d_model=768)
def forward(self, x: torch.Tensor,layers=12,text_bool=False,text_features=None,mode="train"):
for idx,l in enumerate(self.resblocks):
x=l(x)
if idx+1 == layers:
if text_bool:
return x
# implement cross attention between image tokens and text tokens
x_l = x[0]
x_ori_l = x[1]
text_features = text_features.unsqueeze(0).repeat(x_l.shape[0], 1, 1)
x_l = x_l.permute(1, 0, 2)
text_features = text_features.permute(1, 0, 2)
if mode == "test":
x_l = x_l.repeat(text_features.shape[0], 1, 1)
x_l_ca = self.ca(x_l, text_features)
x_l_ca = x_l_ca.permute(1, 0, 2)
x_ori_l = x_ori_l.permute(1, 0, 2)
if mode == "test":
x_ori_l = x_ori_l.repeat(text_features.shape[0], 1, 1)
x_ori_l_ca = self.ca(x_ori_l, text_features)
x_ori_l_ca = x_ori_l_ca.permute(1, 0, 2)
return [x_l_ca, x_ori_l_ca]
class PromptedVisionTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int,prompt_config:dict,train_bool:bool):
super().__init__()
self.train_bool = train_bool
self.patch_size = patch_size
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads, need_weights=True)
self.attn = None
self.embed_dim = width
self.num_heads = heads
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
self.prompt_config = prompt_config
self.prompt_dropout = Dropout(self.prompt_config.DROPOUT)
num_tokens = self.prompt_config.NUM_TOKENS
self.num_tokens = num_tokens # number of prompted tokens
# if project the prompt embeddings
if self.prompt_config.PROJECT > -1:
# only for prepend / add
prompt_dim = self.prompt_config.PROJECT
self.prompt_proj = nn.Linear(
prompt_dim, 768)
nn.init.kaiming_normal_(
self.prompt_proj.weight, a=0, mode='fan_out')
else:
prompt_dim = 768
self.prompt_proj = nn.Identity()
# initiate prompt:
if self.prompt_config.INITIATION == "random":
val = math.sqrt(6. / float(3 * reduce(mul, (patch_size,patch_size), 1) + prompt_dim)) # noqa
self.prompt_embeddings = nn.Parameter(torch.zeros(
1, num_tokens, prompt_dim))
# xavier_uniform initialization
nn.init.uniform_(self.prompt_embeddings.data, -val, val)
if self.prompt_config.DEEP: # noqa
total_d_layer = 12-1 #config.transformer["num_layers"]-1
self.deep_prompt_embeddings = nn.Parameter(torch.zeros(
total_d_layer, num_tokens, prompt_dim))
# xavier_uniform initialization
nn.init.uniform_(self.deep_prompt_embeddings.data, -val, val)
else:
raise ValueError("Other initiation scheme is not supported")
if not self.train_bool:
if self.attn == None:
# apply architecture surgery on the last 6 blocks
for i in range(1, 7): # surgery 7, maskclip 2
self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True)
self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone()
self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone()
self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone()
self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone()
self.transformer.resblocks[-i].attn = self.attn
# @torch.no_grad()
def forward(self, x: torch.Tensor,layers: int = 12,text_features:torch.Tensor = None,mode:str = "test"):
if self.attn == None:
# apply architecture surgery on the last 6 blocks
for i in range(1, 7): # surgery 7, maskclip 2
self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True)
self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone()
self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone()
self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone()
self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone()
self.transformer.resblocks[-i].attn = self.attn
B = x.shape[0]
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] ,, torch.Size([B, 196, 768])
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
side = int((self.positional_embedding.shape[0] - 1) ** 0.5)
new_side = int((x.shape[1] - 1) ** 0.5)
# update the position embedding during inference for varied input size
if side != new_side:
new_pos = self.positional_embedding[1:, :].reshape(-1, side, side, x.shape[-1]).permute(0, 3, 1, 2)
new_pos = torch.nn.functional.interpolate(new_pos, (new_side, new_side), mode='bilinear')
new_pos = new_pos.reshape(-1, x.shape[-1], new_side * new_side).transpose(1, 2)
self.positional_embedding.data = torch.cat([self.positional_embedding[:1, :], new_pos[0]], 0)
pos = self.positional_embedding.to(x.dtype)
x = x + pos # add positional embedding torch.Size([B, 197, 768])
# ADD VISUAL PROMPTS HERE
if self.num_tokens > 0:
x = torch.cat((
x[:, :1, :],
self.prompt_dropout(self.prompt_proj(self.prompt_embeddings).expand(B, -1, -1)),
x[:, 1:, :]
), dim=1)
# (batch_size, cls_token + n_prompt + n_patches, hidden_dim)
x = self.ln_pre(x) # layer norm
x = x.permute(1, 0, 2) # NLD -> LND
if mode == "train":
x_multi = torch.zeros(len(layers),x.shape[1],x.shape[0],512).to(x.device)
elif mode == "test":
x_multi = torch.zeros(len(layers),text_features.shape[0],x.shape[0],512).to(x.device)
for d,layer in enumerate(layers):
x_l, x_ori_l = self.transformer(x,layers=layer,text_bool=False, text_features=text_features,mode = mode)
x_l[0, :, :] = x_ori_l[0, :, :] # clip_surgery
x_l = x_l.permute(1, 0, 2) # LND -> NLD
x_l = self.ln_post(x_l) # layer norm
x_l = x_l @ self.proj
x_multi[d] = x_l
return x_multi
class ModifiedCLIPSurgery(nn.Module):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
cfg:dict,
train_bool:bool,
):
super().__init__()
if "prompt" in cfg.MODEL.TRANSFER_TYPE:
prompt_cfg = cfg.MODEL.PROMPT
else:
prompt_cfg = None
self.prompt_config = prompt_cfg
self.context_length = context_length
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(
layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width
)
else:
vision_heads = vision_width // 64
self.visual = PromptedVisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
prompt_config=self.prompt_config,
train_bool=train_bool,
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
# skipped because self.visual is PromptedVisionTransformer
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features ** -0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image,layers:int=12,text_features=None,mode="test"):
return self.visual(image.type(self.dtype),layers=layers,text_features=text_features,mode=mode)
def encode_text(self, text):
text_bool=True
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x,layers=12,text_bool=text_bool,text_features=None) # always get the last layer features for text
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, image, text,layer_num=12,return_logits=False,mode="train"):
text_features = self.encode_text(text)
patch_features = self.encode_image(image,layers=layer_num,text_features=text_features,mode=mode).squeeze(0)
# normalized features
patch_features = patch_features / patch_features.norm(dim=1, keepdim=True)
text_features = text_features / text_features.norm(dim=1, keepdim=True)
if return_logits:
logit_scale = self.logit_scale.exp()
sketch_features = patch_features[:,0,:]
logits_sketch = logit_scale * sketch_features @ text_features.t()
logits_text = logits_sketch.t()
return logits_sketch,logits_text
else:
return patch_features,text_features