Spaces:
Sleeping
Sleeping
from collections import OrderedDict | |
from typing import Tuple, Union | |
import math | |
# import torchvision | |
import torch | |
import numpy as np | |
import torch | |
from torch import nn | |
# from torch.nn.modules.utils import _pair | |
from torch.nn import Dropout | |
from functools import reduce | |
from operator import mul | |
# from vpt.src.utils import logging | |
from .ca import Cross_Attention | |
# logger = logging.get_logger("visual_prompt") | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1): | |
super().__init__() | |
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 | |
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu1 = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.relu2 = nn.ReLU(inplace=True) | |
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.relu3 = nn.ReLU(inplace=True) | |
self.downsample = None | |
self.stride = stride | |
if stride > 1 or inplanes != planes * Bottleneck.expansion: | |
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 | |
self.downsample = nn.Sequential(OrderedDict([ | |
("-1", nn.AvgPool2d(stride)), | |
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), | |
("1", nn.BatchNorm2d(planes * self.expansion)) | |
])) | |
def forward(self, x: torch.Tensor): | |
identity = x | |
out = self.relu1(self.bn1(self.conv1(x))) | |
out = self.relu2(self.bn2(self.conv2(out))) | |
out = self.avgpool(out) | |
out = self.bn3(self.conv3(out)) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu3(out) | |
return out | |
# implement attention module for v-v self-attention | |
class Attention(nn.Module): | |
def __init__(self, out_dim, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., settings=''): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(out_dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.settings = settings | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
# original self-attention for the original path | |
attn_ori = (q @ k.transpose(-2, -1)) * self.scale | |
attn_ori = attn_ori.softmax(dim=-1) | |
attn_ori = self.attn_drop(attn_ori) | |
# replace k & q by v | |
k = v | |
q = k | |
# resnets have only one self-attention, norm and larger scale perform better | |
if self.settings == 'resnet': | |
k = k / (k.norm(p=2, dim=-1, keepdim=True) + 1e-6) | |
q = k | |
scale = self.scale * 8 | |
else: | |
scale = self.scale | |
# self-attention, higher temperate for resnets performs better | |
attn = (q @ k.transpose(-2, -1)) * scale | |
attn = (attn).softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x_ori = (attn_ori @ v).transpose(1, 2).reshape(B, N, C) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) # clip_surgery | |
#x = v.transpose(1, 2).reshape(B, N, C) # mask_clip | |
x = self.proj_drop(self.proj(x)) | |
x_ori = self.proj_drop(self.proj(x_ori)) | |
return [x, x_ori] | |
class AttentionPool2d(nn.Module): | |
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): | |
super().__init__() | |
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) | |
self.k_proj = nn.Linear(embed_dim, embed_dim) | |
self.q_proj = nn.Linear(embed_dim, embed_dim) | |
self.v_proj = nn.Linear(embed_dim, embed_dim) | |
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) | |
self.num_heads = num_heads | |
self.attn = None | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.output_dim = output_dim | |
def forward(self, x): | |
# reform transformer layer after init and load weights, using v only | |
if self.attn == None: | |
self.attn = Attention(self.output_dim, self.embed_dim, self.num_heads, True) | |
self.attn.qkv.weight = torch.nn.Parameter(torch.cat([self.v_proj.weight, self.v_proj.weight, self.v_proj.weight], 0)) | |
self.attn.qkv.bias = torch.nn.Parameter(torch.cat([self.v_proj.bias, self.v_proj.bias, self.v_proj.bias])) | |
self.attn.proj.weight = self.c_proj.weight | |
self.attn.proj.bias = self.c_proj.bias | |
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC | |
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC | |
side = int((self.positional_embedding.shape[0] - 1) ** 0.5) | |
new_side = int((x.shape[0] - 1) ** 0.5) | |
# update the position embedding during inference for varied input size | |
if side != new_side: | |
new_pos = self.positional_embedding[1:, :].reshape(-1, side, side, x.shape[-1]).permute(0, 3, 1, 2) | |
new_pos = torch.nn.functional.interpolate(new_pos, (new_side, new_side), mode='bilinear') | |
new_pos = new_pos.reshape(-1, x.shape[-1], new_side * new_side).transpose(1, 2) | |
self.positional_embedding.data = torch.cat([self.positional_embedding[:1, :], new_pos[0]], 0) | |
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC | |
x, x_ori = self.attn(x.transpose(0, 1)) | |
# cls token from the original path, and img tokens from the new path | |
x[:, 0, :] = x_ori[:, 0, :] | |
return x | |
class ModifiedResNet(nn.Module): | |
""" | |
A ResNet class that is similar to torchvision's but contains the following changes: | |
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. | |
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 | |
- The final pooling layer is a QKV attention instead of an average pool | |
""" | |
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): | |
super().__init__() | |
self.output_dim = output_dim | |
self.input_resolution = input_resolution | |
# the 3-layer stem | |
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(width // 2) | |
self.relu1 = nn.ReLU(inplace=True) | |
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(width // 2) | |
self.relu2 = nn.ReLU(inplace=True) | |
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(width) | |
self.relu3 = nn.ReLU(inplace=True) | |
self.avgpool = nn.AvgPool2d(2) | |
# residual layers | |
self._inplanes = width # this is a *mutable* variable used during construction | |
self.layer1 = self._make_layer(width, layers[0]) | |
self.layer2 = self._make_layer(width * 2, layers[1], stride=2) | |
self.layer3 = self._make_layer(width * 4, layers[2], stride=2) | |
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) | |
embed_dim = width * 32 # the ResNet feature dimension | |
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) | |
def _make_layer(self, planes, blocks, stride=1): | |
layers = [Bottleneck(self._inplanes, planes, stride)] | |
self._inplanes = planes * Bottleneck.expansion | |
for _ in range(1, blocks): | |
layers.append(Bottleneck(self._inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
def stem(x): | |
x = self.relu1(self.bn1(self.conv1(x))) | |
x = self.relu2(self.bn2(self.conv2(x))) | |
x = self.relu3(self.bn3(self.conv3(x))) | |
x = self.avgpool(x) | |
return x | |
x = x.type(self.conv1.weight.dtype) | |
x = stem(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.attnpool(x) | |
# shape BNC | |
return x | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
ret = super().forward(x.clone().type(torch.float32)) | |
return ret.type(orig_type) | |
class QuickGELU(nn.Module): | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class ResidualAttentionBlock(nn.Module): | |
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): | |
super().__init__() | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.ln_1 = LayerNorm(d_model) | |
self.mlp = nn.Sequential(OrderedDict([ | |
("c_fc", nn.Linear(d_model, d_model * 4)), | |
("gelu", QuickGELU()), | |
("c_proj", nn.Linear(d_model * 4, d_model)) | |
])) | |
self.ln_2 = LayerNorm(d_model) | |
self.attn_mask = attn_mask | |
self.attn_probs = None | |
self.attn_grad = None | |
self.attn_keys = None | |
def set_attn_probs(self, attn_probs): | |
self.attn_probs = attn_probs | |
def set_attn_keys(self, attn_keys): | |
self.attn_keys = attn_keys | |
def set_attn_grad(self, attn_grad): | |
self.attn_grad = attn_grad | |
def attention(self, x: torch.Tensor, attn_mask: torch.Tensor = None, mode="train"): | |
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None | |
if isinstance(self.attn, Attention): | |
x = x.transpose(0, 1) | |
x, x_ori = self.attn(x) | |
return [x.transpose(0, 1), x_ori.transpose(0, 1)] | |
else: | |
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |
def forward(self, x, attn_mask: torch.Tensor = None, mode="train"): | |
# dual paths for blocks deeper than "d" | |
if isinstance(self.attn, Attention): | |
if isinstance(x, list): | |
x, x_ori = x | |
x_res = self.attention(self.ln_1(x_ori)) | |
x_res, x_ori_res = x_res | |
x_ori += x_ori_res | |
x_ori = x_ori + self.mlp(self.ln_2(x_ori)) | |
x += x_res # skip ffn for the new path | |
return [x, x_ori] | |
# start of dual path | |
else: | |
x_res = self.attention(self.ln_1(x)) | |
if isinstance(x_res, list): | |
x_res, x_ori_res = x_res | |
x_ori = x + x_ori_res | |
x_ori = x_ori + self.mlp(self.ln_2(x_ori)) | |
x += x_res | |
return [x, x_ori] | |
# single path before "d" | |
else: | |
x = x + self.attention(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class Transformer(nn.Module): | |
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, need_weights: bool = False): | |
super().__init__() | |
self.width = width | |
self.layers = layers | |
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for i in range(layers)]) | |
self.ca = Cross_Attention(d_model=768) | |
def forward(self, x: torch.Tensor,layers=12,text_bool=False,text_features=None,mode="train"): | |
for idx,l in enumerate(self.resblocks): | |
x=l(x) | |
if idx+1 == layers: | |
if text_bool: | |
return x | |
# implement cross attention between image tokens and text tokens | |
x_l = x[0] | |
x_ori_l = x[1] | |
text_features = text_features.unsqueeze(0).repeat(x_l.shape[0], 1, 1) | |
x_l = x_l.permute(1, 0, 2) | |
text_features = text_features.permute(1, 0, 2) | |
if mode == "test": | |
x_l = x_l.repeat(text_features.shape[0], 1, 1) | |
x_l_ca = self.ca(x_l, text_features) | |
x_l_ca = x_l_ca.permute(1, 0, 2) | |
x_ori_l = x_ori_l.permute(1, 0, 2) | |
if mode == "test": | |
x_ori_l = x_ori_l.repeat(text_features.shape[0], 1, 1) | |
x_ori_l_ca = self.ca(x_ori_l, text_features) | |
x_ori_l_ca = x_ori_l_ca.permute(1, 0, 2) | |
return [x_l_ca, x_ori_l_ca] | |
class PromptedVisionTransformer(nn.Module): | |
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int,prompt_config:dict,train_bool:bool): | |
super().__init__() | |
self.train_bool = train_bool | |
self.patch_size = patch_size | |
self.input_resolution = input_resolution | |
self.output_dim = output_dim | |
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) | |
scale = width ** -0.5 | |
self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) | |
self.ln_pre = LayerNorm(width) | |
self.transformer = Transformer(width, layers, heads, need_weights=True) | |
self.attn = None | |
self.embed_dim = width | |
self.num_heads = heads | |
self.ln_post = LayerNorm(width) | |
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |
self.prompt_config = prompt_config | |
self.prompt_dropout = Dropout(self.prompt_config.DROPOUT) | |
num_tokens = self.prompt_config.NUM_TOKENS | |
self.num_tokens = num_tokens # number of prompted tokens | |
# if project the prompt embeddings | |
if self.prompt_config.PROJECT > -1: | |
# only for prepend / add | |
prompt_dim = self.prompt_config.PROJECT | |
self.prompt_proj = nn.Linear( | |
prompt_dim, 768) | |
nn.init.kaiming_normal_( | |
self.prompt_proj.weight, a=0, mode='fan_out') | |
else: | |
prompt_dim = 768 | |
self.prompt_proj = nn.Identity() | |
# initiate prompt: | |
if self.prompt_config.INITIATION == "random": | |
val = math.sqrt(6. / float(3 * reduce(mul, (patch_size,patch_size), 1) + prompt_dim)) # noqa | |
self.prompt_embeddings = nn.Parameter(torch.zeros( | |
1, num_tokens, prompt_dim)) | |
# xavier_uniform initialization | |
nn.init.uniform_(self.prompt_embeddings.data, -val, val) | |
if self.prompt_config.DEEP: # noqa | |
total_d_layer = 12-1 #config.transformer["num_layers"]-1 | |
self.deep_prompt_embeddings = nn.Parameter(torch.zeros( | |
total_d_layer, num_tokens, prompt_dim)) | |
# xavier_uniform initialization | |
nn.init.uniform_(self.deep_prompt_embeddings.data, -val, val) | |
else: | |
raise ValueError("Other initiation scheme is not supported") | |
if not self.train_bool: | |
if self.attn == None: | |
# apply architecture surgery on the last 6 blocks | |
for i in range(1, 7): # surgery 7, maskclip 2 | |
self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True) | |
self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone() | |
self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone() | |
self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone() | |
self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone() | |
self.transformer.resblocks[-i].attn = self.attn | |
# @torch.no_grad() | |
def forward(self, x: torch.Tensor,layers: int = 12,text_features:torch.Tensor = None,mode:str = "test"): | |
if self.attn == None: | |
# apply architecture surgery on the last 6 blocks | |
for i in range(1, 7): # surgery 7, maskclip 2 | |
self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True) | |
self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone() | |
self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone() | |
self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone() | |
self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone() | |
self.transformer.resblocks[-i].attn = self.attn | |
B = x.shape[0] | |
x = self.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] ,, torch.Size([B, 196, 768]) | |
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
side = int((self.positional_embedding.shape[0] - 1) ** 0.5) | |
new_side = int((x.shape[1] - 1) ** 0.5) | |
# update the position embedding during inference for varied input size | |
if side != new_side: | |
new_pos = self.positional_embedding[1:, :].reshape(-1, side, side, x.shape[-1]).permute(0, 3, 1, 2) | |
new_pos = torch.nn.functional.interpolate(new_pos, (new_side, new_side), mode='bilinear') | |
new_pos = new_pos.reshape(-1, x.shape[-1], new_side * new_side).transpose(1, 2) | |
self.positional_embedding.data = torch.cat([self.positional_embedding[:1, :], new_pos[0]], 0) | |
pos = self.positional_embedding.to(x.dtype) | |
x = x + pos # add positional embedding torch.Size([B, 197, 768]) | |
# ADD VISUAL PROMPTS HERE | |
if self.num_tokens > 0: | |
x = torch.cat(( | |
x[:, :1, :], | |
self.prompt_dropout(self.prompt_proj(self.prompt_embeddings).expand(B, -1, -1)), | |
x[:, 1:, :] | |
), dim=1) | |
# (batch_size, cls_token + n_prompt + n_patches, hidden_dim) | |
x = self.ln_pre(x) # layer norm | |
x = x.permute(1, 0, 2) # NLD -> LND | |
if mode == "train": | |
x_multi = torch.zeros(len(layers),x.shape[1],x.shape[0],512).to(x.device) | |
elif mode == "test": | |
x_multi = torch.zeros(len(layers),text_features.shape[0],x.shape[0],512).to(x.device) | |
for d,layer in enumerate(layers): | |
x_l, x_ori_l = self.transformer(x,layers=layer,text_bool=False, text_features=text_features,mode = mode) | |
x_l[0, :, :] = x_ori_l[0, :, :] # clip_surgery | |
x_l = x_l.permute(1, 0, 2) # LND -> NLD | |
x_l = self.ln_post(x_l) # layer norm | |
x_l = x_l @ self.proj | |
x_multi[d] = x_l | |
return x_multi | |
class ModifiedCLIPSurgery(nn.Module): | |
def __init__(self, | |
embed_dim: int, | |
# vision | |
image_resolution: int, | |
vision_layers: Union[Tuple[int, int, int, int], int], | |
vision_width: int, | |
vision_patch_size: int, | |
# text | |
context_length: int, | |
vocab_size: int, | |
transformer_width: int, | |
transformer_heads: int, | |
transformer_layers: int, | |
cfg:dict, | |
train_bool:bool, | |
): | |
super().__init__() | |
if "prompt" in cfg.MODEL.TRANSFER_TYPE: | |
prompt_cfg = cfg.MODEL.PROMPT | |
else: | |
prompt_cfg = None | |
self.prompt_config = prompt_cfg | |
self.context_length = context_length | |
if isinstance(vision_layers, (tuple, list)): | |
vision_heads = vision_width * 32 // 64 | |
self.visual = ModifiedResNet( | |
layers=vision_layers, | |
output_dim=embed_dim, | |
heads=vision_heads, | |
input_resolution=image_resolution, | |
width=vision_width | |
) | |
else: | |
vision_heads = vision_width // 64 | |
self.visual = PromptedVisionTransformer( | |
input_resolution=image_resolution, | |
patch_size=vision_patch_size, | |
width=vision_width, | |
layers=vision_layers, | |
heads=vision_heads, | |
output_dim=embed_dim, | |
prompt_config=self.prompt_config, | |
train_bool=train_bool, | |
) | |
self.transformer = Transformer( | |
width=transformer_width, | |
layers=transformer_layers, | |
heads=transformer_heads, | |
attn_mask=self.build_attention_mask() | |
) | |
self.vocab_size = vocab_size | |
self.token_embedding = nn.Embedding(vocab_size, transformer_width) | |
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) | |
self.ln_final = LayerNorm(transformer_width) | |
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
self.initialize_parameters() | |
def initialize_parameters(self): | |
nn.init.normal_(self.token_embedding.weight, std=0.02) | |
nn.init.normal_(self.positional_embedding, std=0.01) | |
# skipped because self.visual is PromptedVisionTransformer | |
if isinstance(self.visual, ModifiedResNet): | |
if self.visual.attnpool is not None: | |
std = self.visual.attnpool.c_proj.in_features ** -0.5 | |
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) | |
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) | |
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) | |
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) | |
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: | |
for name, param in resnet_block.named_parameters(): | |
if name.endswith("bn3.weight"): | |
nn.init.zeros_(param) | |
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) | |
attn_std = self.transformer.width ** -0.5 | |
fc_std = (2 * self.transformer.width) ** -0.5 | |
for block in self.transformer.resblocks: | |
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) | |
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) | |
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) | |
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) | |
if self.text_projection is not None: | |
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) | |
def build_attention_mask(self): | |
# lazily create causal attention mask, with full attention between the vision tokens | |
# pytorch uses additive attention mask; fill with -inf | |
mask = torch.empty(self.context_length, self.context_length) | |
mask.fill_(float("-inf")) | |
mask.triu_(1) # zero out the lower diagonal | |
return mask | |
def dtype(self): | |
return self.visual.conv1.weight.dtype | |
def encode_image(self, image,layers:int=12,text_features=None,mode="test"): | |
return self.visual(image.type(self.dtype),layers=layers,text_features=text_features,mode=mode) | |
def encode_text(self, text): | |
text_bool=True | |
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] | |
x = x + self.positional_embedding.type(self.dtype) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x,layers=12,text_bool=text_bool,text_features=None) # always get the last layer features for text | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.ln_final(x).type(self.dtype) | |
# x.shape = [batch_size, n_ctx, transformer.width] | |
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection | |
return x | |
def forward(self, image, text,layer_num=12,return_logits=False,mode="train"): | |
text_features = self.encode_text(text) | |
patch_features = self.encode_image(image,layers=layer_num,text_features=text_features,mode=mode).squeeze(0) | |
# normalized features | |
patch_features = patch_features / patch_features.norm(dim=1, keepdim=True) | |
text_features = text_features / text_features.norm(dim=1, keepdim=True) | |
if return_logits: | |
logit_scale = self.logit_scale.exp() | |
sketch_features = patch_features[:,0,:] | |
logits_sketch = logit_scale * sketch_features @ text_features.t() | |
logits_text = logits_sketch.t() | |
return logits_sketch,logits_text | |
else: | |
return patch_features,text_features |