tori29umai commited on
Commit
5354773
·
verified ·
1 Parent(s): 8336ddb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -1635
app.py CHANGED
@@ -1,1657 +1,106 @@
1
- from diffusers_helper.hf_login import login
2
-
3
- import os
4
- import threading
5
- import time
6
- import requests
7
- from requests.adapters import HTTPAdapter
8
- from urllib3.util.retry import Retry
9
- import json
10
-
11
- os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
12
-
13
- # 添加中英双语翻译字典
14
- translations = {
15
- "en": {
16
- "title": "FramePack - Image to Video Generation",
17
- "upload_image": "Upload Image",
18
- "prompt": "Prompt",
19
- "quick_prompts": "Quick Prompts",
20
- "start_generation": "Generate",
21
- "stop_generation": "Stop",
22
- "use_teacache": "Use TeaCache",
23
- "teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
24
- "negative_prompt": "Negative Prompt",
25
- "seed": "Seed",
26
- "video_length": "Video Length (max 5 seconds)",
27
- "latent_window": "Latent Window Size",
28
- "steps": "Inference Steps",
29
- "steps_info": "Changing this value is not recommended.",
30
- "cfg_scale": "CFG Scale",
31
- "distilled_cfg": "Distilled CFG Scale",
32
- "distilled_cfg_info": "Changing this value is not recommended.",
33
- "cfg_rescale": "CFG Rescale",
34
- "gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
35
- "gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
36
- "next_latents": "Next Latents",
37
- "generated_video": "Generated Video",
38
- "sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
39
- "error_message": "Error",
40
- "processing_error": "Processing error",
41
- "network_error": "Network connection is unstable, model download timed out. Please try again later.",
42
- "memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
43
- "model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
44
- "partial_video": "Processing error, but partial video has been generated",
45
- "processing_interrupt": "Processing was interrupted, but partial video has been generated"
46
- },
47
- "zh": {
48
- "title": "FramePack - 图像到视频生成",
49
- "upload_image": "上传图像",
50
- "prompt": "提示词",
51
- "quick_prompts": "快速提示词列表",
52
- "start_generation": "开始生成",
53
- "stop_generation": "结束生成",
54
- "use_teacache": "使用TeaCache",
55
- "teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。",
56
- "negative_prompt": "负面提示词",
57
- "seed": "随机种子",
58
- "video_length": "视频长度(最大5秒)",
59
- "latent_window": "潜在窗口大小",
60
- "steps": "推理步数",
61
- "steps_info": "不建议修改此值。",
62
- "cfg_scale": "CFG Scale",
63
- "distilled_cfg": "蒸馏CFG比例",
64
- "distilled_cfg_info": "不建议修改此值。",
65
- "cfg_rescale": "CFG重缩放",
66
- "gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)",
67
- "gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。",
68
- "next_latents": "下一批潜变量",
69
- "generated_video": "生成的视频",
70
- "sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。",
71
- "error_message": "错误信息",
72
- "processing_error": "处理过程出错",
73
- "network_error": "网络连接不稳定,模型下载超时。请稍后再试。",
74
- "memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。",
75
- "model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。",
76
- "partial_video": "处理过程中出现错误,但已生成部分视频",
77
- "processing_interrupt": "处理过程中断,但已生成部分视频"
78
- }
79
- }
80
-
81
- # 语言切换功能
82
- def get_translation(key, lang="en"):
83
- if lang in translations and key in translations[lang]:
84
- return translations[lang][key]
85
- # 默认返回英文
86
- return translations["en"].get(key, key)
87
-
88
- # 默认语言设置
89
- current_language = "en"
90
-
91
- # 切换语言函数
92
- def switch_language():
93
- global current_language
94
- current_language = "zh" if current_language == "en" else "en"
95
- return current_language
96
-
97
  import gradio as gr
98
- import torch
99
- import traceback
100
- import einops
101
- import safetensors.torch as sf
102
- import numpy as np
103
- import math
104
-
105
- # 检查是否在Hugging Face Space环境中
106
- IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
107
-
108
- # 添加变量跟踪GPU可用性
109
- GPU_AVAILABLE = False
110
- GPU_INITIALIZED = False
111
- last_update_time = time.time()
112
-
113
- # 如果在Hugging Face Space中,导入spaces模块
114
- if IN_HF_SPACE:
115
- try:
116
- import spaces
117
- print("在Hugging Face Space环境中运行,已导入spaces模块")
118
-
119
- # 检查GPU可用性
120
- try:
121
- GPU_AVAILABLE = torch.cuda.is_available()
122
- print(f"GPU available: {GPU_AVAILABLE}")
123
- if GPU_AVAILABLE:
124
- print(f"GPU device name: {torch.cuda.get_device_name(0)}")
125
- print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
126
-
127
- # 尝试进行小型GPU操作,确认GPU实际可用
128
- test_tensor = torch.zeros(1, device='cuda')
129
- test_tensor = test_tensor + 1
130
- del test_tensor
131
- print("成功进行GPU测试操作")
132
- else:
133
- print("警告: CUDA报告可用,但未检测到GPU设备")
134
- except Exception as e:
135
- GPU_AVAILABLE = False
136
- print(f"检查GPU时出错: {e}")
137
- print("将使用CPU模式运行")
138
- except ImportError:
139
- print("未能导入spaces模块,可能不在Hugging Face Space环境中")
140
- GPU_AVAILABLE = torch.cuda.is_available()
141
-
142
- from PIL import Image
143
- from diffusers import AutoencoderKLHunyuanVideo
144
- from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
145
- from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
146
- from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
147
- from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
148
- from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
149
- from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE
150
- from diffusers_helper.thread_utils import AsyncStream, async_run
151
- from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
152
- from transformers import SiglipImageProcessor, SiglipVisionModel
153
- from diffusers_helper.clip_vision import hf_clip_vision_encode
154
- from diffusers_helper.bucket_tools import find_nearest_bucket
155
-
156
- outputs_folder = './outputs/'
157
- os.makedirs(outputs_folder, exist_ok=True)
158
-
159
- # 在Spaces环境中,我们延迟所有CUDA操作
160
- if not IN_HF_SPACE:
161
- # 仅在非Spaces环境中获取CUDA内存
162
- try:
163
- if torch.cuda.is_available():
164
- free_mem_gb = get_cuda_free_memory_gb(gpu)
165
- print(f'Free VRAM {free_mem_gb} GB')
166
- else:
167
- free_mem_gb = 6.0 # 默认值
168
- print("CUDA不可用,使用默认的内存设置")
169
- except Exception as e:
170
- free_mem_gb = 6.0 # 默认值
171
- print(f"获取CUDA内存时出错: {e},使用默认的内存设置")
172
-
173
- high_vram = free_mem_gb > 60
174
- print(f'High-VRAM Mode: {high_vram}')
175
- else:
176
- # 在Spaces环境中使用默认值
177
- print("在Spaces环境中使用默认内存设置")
178
- try:
179
- if GPU_AVAILABLE:
180
- free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9 # 使用90%的GPU内存
181
- high_vram = free_mem_gb > 10 # 更保守的条件
182
- else:
183
- free_mem_gb = 6.0 # 默认值
184
- high_vram = False
185
- except Exception as e:
186
- print(f"获取GPU内存时出错: {e}")
187
- free_mem_gb = 6.0 # 默认值
188
- high_vram = False
189
-
190
- print(f'GPU内存: {free_mem_gb:.2f} GB, High-VRAM Mode: {high_vram}')
191
-
192
- # 使用models变量存储全局模型引用
193
- models = {}
194
- cpu_fallback_mode = not GPU_AVAILABLE # 如果GPU不可用,使用CPU回退模式
195
-
196
- # 使用加载模型的函数
197
- def load_models():
198
- global models, cpu_fallback_mode, GPU_INITIALIZED
199
-
200
- if GPU_INITIALIZED:
201
- print("模型已加载,跳过重复加载")
202
- return models
203
-
204
- print("开始加载模型...")
205
-
206
- try:
207
- # 设置设备,根据GPU可用性确定
208
- device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
209
- model_device = 'cpu' # 初始加载到CPU
210
-
211
- # 降低精度以节省内存
212
- dtype = torch.float16 if GPU_AVAILABLE else torch.float32
213
- transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
214
-
215
- print(f"使用设备: {device}, 模型精度: {dtype}, Transformer精度: {transformer_dtype}")
216
-
217
- # 加载模型
218
- try:
219
- text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device)
220
- text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device)
221
- tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
222
- tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
223
- vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to(model_device)
224
-
225
- feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
226
- image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to(model_device)
227
-
228
- transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device)
229
-
230
- print("成功加载所有模型")
231
- except Exception as e:
232
- print(f"加载模型时出错: {e}")
233
- print("尝试降低精度重新加载...")
234
-
235
- # 降低精度重试
236
- dtype = torch.float32
237
- transformer_dtype = torch.float32
238
- cpu_fallback_mode = True
239
-
240
- text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to('cpu')
241
- text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to('cpu')
242
- tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
243
- tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
244
- vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to('cpu')
245
-
246
- feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
247
- image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to('cpu')
248
-
249
- transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu')
250
-
251
- print("使用CPU模式成功加载所有模型")
252
-
253
- vae.eval()
254
- text_encoder.eval()
255
- text_encoder_2.eval()
256
- image_encoder.eval()
257
- transformer.eval()
258
-
259
- if not high_vram or cpu_fallback_mode:
260
- vae.enable_slicing()
261
- vae.enable_tiling()
262
-
263
- transformer.high_quality_fp32_output_for_inference = True
264
- print('transformer.high_quality_fp32_output_for_inference = True')
265
-
266
- # 设置模型精度
267
- if not cpu_fallback_mode:
268
- transformer.to(dtype=transformer_dtype)
269
- vae.to(dtype=dtype)
270
- image_encoder.to(dtype=dtype)
271
- text_encoder.to(dtype=dtype)
272
- text_encoder_2.to(dtype=dtype)
273
-
274
- vae.requires_grad_(False)
275
- text_encoder.requires_grad_(False)
276
- text_encoder_2.requires_grad_(False)
277
- image_encoder.requires_grad_(False)
278
- transformer.requires_grad_(False)
279
-
280
- if torch.cuda.is_available() and not cpu_fallback_mode:
281
- try:
282
- if not high_vram:
283
- # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
284
- DynamicSwapInstaller.install_model(transformer, device=device)
285
- DynamicSwapInstaller.install_model(text_encoder, device=device)
286
- else:
287
- text_encoder.to(device)
288
- text_encoder_2.to(device)
289
- image_encoder.to(device)
290
- vae.to(device)
291
- transformer.to(device)
292
- print(f"成功将模型移动到{device}设备")
293
- except Exception as e:
294
- print(f"移动模型到{device}时出错: {e}")
295
- print("回退到CPU模式")
296
- cpu_fallback_mode = True
297
-
298
- # 保存到全局变量
299
- models = {
300
- 'text_encoder': text_encoder,
301
- 'text_encoder_2': text_encoder_2,
302
- 'tokenizer': tokenizer,
303
- 'tokenizer_2': tokenizer_2,
304
- 'vae': vae,
305
- 'feature_extractor': feature_extractor,
306
- 'image_encoder': image_encoder,
307
- 'transformer': transformer
308
- }
309
-
310
- GPU_INITIALIZED = True
311
- print(f"模型加载完成,运行模式: {'CPU' if cpu_fallback_mode else 'GPU'}")
312
- return models
313
- except Exception as e:
314
- print(f"加载模型过程中发生错误: {e}")
315
- traceback.print_exc()
316
-
317
- # 记录更详细的错误信息
318
- error_info = {
319
- "error": str(e),
320
- "traceback": traceback.format_exc(),
321
- "cuda_available": torch.cuda.is_available(),
322
- "device": "cpu" if cpu_fallback_mode else "cuda",
323
- }
324
-
325
- # 保存错误信息到文件,方便排查
326
- try:
327
- with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f:
328
- f.write(str(error_info))
329
- except:
330
- pass
331
-
332
- # 返回空字典,允许应用继续尝试运行
333
- cpu_fallback_mode = True
334
- return {}
335
-
336
-
337
- # 使用Hugging Face Spaces GPU装饰器
338
- if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
339
- try:
340
- @spaces.GPU
341
- def initialize_models():
342
- """在@spaces.GPU装饰器内初始化模型"""
343
- global GPU_INITIALIZED
344
- try:
345
- result = load_models()
346
- GPU_INITIALIZED = True
347
- return result
348
- except Exception as e:
349
- print(f"使用spaces.GPU初始化模型时出错: {e}")
350
- traceback.print_exc()
351
- global cpu_fallback_mode
352
- cpu_fallback_mode = True
353
- # 不使用装饰器再次尝试
354
- return load_models()
355
- except Exception as e:
356
- print(f"创建spaces.GPU装饰器时出错: {e}")
357
- # 如果装饰器出错,直接使用非装饰器版本
358
- def initialize_models():
359
- return load_models()
360
-
361
-
362
- # 以下函数内部会延迟获取模型
363
- def get_models():
364
- """获取模型,如果尚未加载则加载模型"""
365
- global models, GPU_INITIALIZED
366
-
367
- # 添加模型加载锁,防止并发加载
368
- model_loading_key = "__model_loading__"
369
-
370
- if not models:
371
- # 检查是否正在加载模型
372
- if model_loading_key in globals():
373
- print("模型正在加载中,等待...")
374
- # 等待模型加载完成
375
- import time
376
- start_wait = time.time()
377
- while not models and model_loading_key in globals():
378
- time.sleep(0.5)
379
- # 超过60秒认为加载失败
380
- if time.time() - start_wait > 60:
381
- print("等待模型加载超时")
382
- break
383
-
384
- if models:
385
- return models
386
-
387
- try:
388
- # 设置加载标记
389
- globals()[model_loading_key] = True
390
-
391
- if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
392
- try:
393
- print("使用@spaces.GPU装饰器加载模型")
394
- models = initialize_models()
395
- except Exception as e:
396
- print(f"使用GPU装饰器加载模型失败: {e}")
397
- print("尝试直接加载模型")
398
- models = load_models()
399
- else:
400
- print("直接加载模型")
401
- models = load_models()
402
- except Exception as e:
403
- print(f"加载模型时发生未预期的错误: {e}")
404
- traceback.print_exc()
405
- # 确保有一个空字典
406
- models = {}
407
- finally:
408
- # 无论成功与否,都移除加载标记
409
- if model_loading_key in globals():
410
- del globals()[model_loading_key]
411
-
412
- return models
413
-
414
-
415
- stream = AsyncStream()
416
-
417
-
418
- @torch.no_grad()
419
- def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
420
- global last_update_time
421
- last_update_time = time.time()
422
-
423
- # 限制视频长度不超过5秒
424
- total_second_length = min(total_second_length, 5.0)
425
-
426
- # 获取模型
427
- try:
428
- models = get_models()
429
- if not models:
430
- error_msg = "模型加载失败,请检查日志获取详细信息"
431
- print(error_msg)
432
- stream.output_queue.push(('error', error_msg))
433
- stream.output_queue.push(('end', None))
434
- return
435
-
436
- text_encoder = models['text_encoder']
437
- text_encoder_2 = models['text_encoder_2']
438
- tokenizer = models['tokenizer']
439
- tokenizer_2 = models['tokenizer_2']
440
- vae = models['vae']
441
- feature_extractor = models['feature_extractor']
442
- image_encoder = models['image_encoder']
443
- transformer = models['transformer']
444
- except Exception as e:
445
- error_msg = f"获取模型时出错: {e}"
446
- print(error_msg)
447
- traceback.print_exc()
448
- stream.output_queue.push(('error', error_msg))
449
- stream.output_queue.push(('end', None))
450
- return
451
-
452
- # 确定设备
453
- device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
454
- print(f"使用设备: {device} 进行推理")
455
-
456
- # 调整参数以适应CPU模式
457
- if cpu_fallback_mode:
458
- print("CPU模式下使用更精简的参数")
459
- # 减小处理大小以加快CPU处理
460
- latent_window_size = min(latent_window_size, 5)
461
- steps = min(steps, 15) # 减少步数
462
- total_second_length = min(total_second_length, 2.0) # CPU模式下进一步限制视频长度
463
-
464
- total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
465
- total_latent_sections = int(max(round(total_latent_sections), 1))
466
-
467
- job_id = generate_timestamp()
468
- last_output_filename = None
469
- history_pixels = None
470
- history_latents = None
471
- total_generated_latent_frames = 0
472
-
473
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
474
-
475
- try:
476
- # Clean GPU
477
- if not high_vram and not cpu_fallback_mode:
478
- try:
479
- unload_complete_models(
480
- text_encoder, text_encoder_2, image_encoder, vae, transformer
481
- )
482
- except Exception as e:
483
- print(f"卸载模型时出错: {e}")
484
- # 继续执行,不中断流程
485
-
486
- # Text encoding
487
- last_update_time = time.time()
488
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
489
-
490
- try:
491
- if not high_vram and not cpu_fallback_mode:
492
- fake_diffusers_current_device(text_encoder, device)
493
- load_model_as_complete(text_encoder_2, target_device=device)
494
-
495
- llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
496
-
497
- if cfg == 1:
498
- llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
499
- else:
500
- llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
501
-
502
- llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
503
- llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
504
- except Exception as e:
505
- error_msg = f"文本编码过程出错: {e}"
506
- print(error_msg)
507
- traceback.print_exc()
508
- stream.output_queue.push(('error', error_msg))
509
- stream.output_queue.push(('end', None))
510
- return
511
-
512
- # Processing input image
513
- last_update_time = time.time()
514
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
515
-
516
- try:
517
- H, W, C = input_image.shape
518
- height, width = find_nearest_bucket(H, W, resolution=640)
519
-
520
- # 如果是CPU模式,缩小处理尺寸
521
- if cpu_fallback_mode:
522
- height = min(height, 320)
523
- width = min(width, 320)
524
-
525
- input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
526
-
527
- Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
528
-
529
- input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
530
- input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
531
- except Exception as e:
532
- error_msg = f"图像处理过程出错: {e}"
533
- print(error_msg)
534
- traceback.print_exc()
535
- stream.output_queue.push(('error', error_msg))
536
- stream.output_queue.push(('end', None))
537
- return
538
-
539
- # VAE encoding
540
- last_update_time = time.time()
541
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
542
-
543
- try:
544
- if not high_vram and not cpu_fallback_mode:
545
- load_model_as_complete(vae, target_device=device)
546
-
547
- start_latent = vae_encode(input_image_pt, vae)
548
- except Exception as e:
549
- error_msg = f"VAE编码过程出错: {e}"
550
- print(error_msg)
551
- traceback.print_exc()
552
- stream.output_queue.push(('error', error_msg))
553
- stream.output_queue.push(('end', None))
554
- return
555
-
556
- # CLIP Vision
557
- last_update_time = time.time()
558
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
559
-
560
- try:
561
- if not high_vram and not cpu_fallback_mode:
562
- load_model_as_complete(image_encoder, target_device=device)
563
-
564
- image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
565
- image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
566
- except Exception as e:
567
- error_msg = f"CLIP Vision编码过程出错: {e}"
568
- print(error_msg)
569
- traceback.print_exc()
570
- stream.output_queue.push(('error', error_msg))
571
- stream.output_queue.push(('end', None))
572
- return
573
-
574
- # Dtype
575
- try:
576
- llama_vec = llama_vec.to(transformer.dtype)
577
- llama_vec_n = llama_vec_n.to(transformer.dtype)
578
- clip_l_pooler = clip_l_pooler.to(transformer.dtype)
579
- clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
580
- image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
581
- except Exception as e:
582
- error_msg = f"数据类型转换出错: {e}"
583
- print(error_msg)
584
- traceback.print_exc()
585
- stream.output_queue.push(('error', error_msg))
586
- stream.output_queue.push(('end', None))
587
- return
588
-
589
- # Sampling
590
- last_update_time = time.time()
591
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
592
-
593
- rnd = torch.Generator("cpu").manual_seed(seed)
594
- num_frames = latent_window_size * 4 - 3
595
-
596
- try:
597
- history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
598
- history_pixels = None
599
- total_generated_latent_frames = 0
600
- except Exception as e:
601
- error_msg = f"初始化历史状态出错: {e}"
602
- print(error_msg)
603
- traceback.print_exc()
604
- stream.output_queue.push(('error', error_msg))
605
- stream.output_queue.push(('end', None))
606
- return
607
-
608
- latent_paddings = reversed(range(total_latent_sections))
609
-
610
- if total_latent_sections > 4:
611
- # In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
612
- # items looks better than expanding it when total_latent_sections > 4
613
- # One can try to remove below trick and just
614
- # use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
615
- latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
616
-
617
- for latent_padding in latent_paddings:
618
- last_update_time = time.time()
619
- is_last_section = latent_padding == 0
620
- latent_padding_size = latent_padding * latent_window_size
621
-
622
- if stream.input_queue.top() == 'end':
623
- # 确保在结束时保存当前的视频
624
- if history_pixels is not None and total_generated_latent_frames > 0:
625
- try:
626
- output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
627
- save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
628
- stream.output_queue.push(('file', output_filename))
629
- except Exception as e:
630
- print(f"保存最终视频时出错: {e}")
631
-
632
- stream.output_queue.push(('end', None))
633
- return
634
-
635
- print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
636
 
637
- try:
638
- indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
639
- clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
640
- clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
641
 
642
- clean_latents_pre = start_latent.to(history_latents)
643
- clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
644
- clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
645
- except Exception as e:
646
- error_msg = f"准备采样数据时出错: {e}"
647
- print(error_msg)
648
- traceback.print_exc()
649
- # 尝试继续下一轮迭代而不是完全终止
650
- if last_output_filename:
651
- stream.output_queue.push(('file', last_output_filename))
652
- continue
653
-
654
- if not high_vram and not cpu_fallback_mode:
655
- try:
656
- unload_complete_models()
657
- move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation)
658
- except Exception as e:
659
- print(f"移动transformer到GPU时出错: {e}")
660
- # 继续执行,可能影响性能但不必终止
661
-
662
- if use_teacache and not cpu_fallback_mode:
663
- try:
664
- transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
665
- except Exception as e:
666
- print(f"初始化teacache时出错: {e}")
667
- # 禁用teacache并继续
668
- transformer.initialize_teacache(enable_teacache=False)
669
- else:
670
- transformer.initialize_teacache(enable_teacache=False)
671
-
672
- def callback(d):
673
- global last_update_time
674
- last_update_time = time.time()
675
-
676
- try:
677
- # 首先检查是否有停止信号
678
- print(f"【调试】回调函数: 步骤 {d['i']}, 检查是否有停止信号")
679
- try:
680
- queue_top = stream.input_queue.top()
681
- print(f"【调试】回调函数: 队列顶部信号 = {queue_top}")
682
-
683
- if queue_top == 'end':
684
- print("【调试】回调函数: 检测到停止信号,准备中断...")
685
- try:
686
- stream.output_queue.push(('end', None))
687
- print("【调试】回调函数: 成功向输出队列推送end信号")
688
- except Exception as e:
689
- print(f"【调试】回调函数: 向输出队列推送end信号失败: {e}")
690
-
691
- print("【调试】回调函数: 即将抛出KeyboardInterrupt异常")
692
- raise KeyboardInterrupt('用户主动结束任务')
693
- except Exception as e:
694
- print(f"【调试】回调函数: 检查队列顶部信号出错: {e}")
695
-
696
- preview = d['denoised']
697
- preview = vae_decode_fake(preview)
698
-
699
- preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
700
- preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
701
-
702
- current_step = d['i'] + 1
703
- percentage = int(100.0 * current_step / steps)
704
- hint = f'Sampling {current_step}/{steps}'
705
- desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
706
- stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
707
- except KeyboardInterrupt as e:
708
- # 捕获并重新抛出中断异常,确保它能传播到采样函数
709
- print(f"【调试】回调函数: 捕获到KeyboardInterrupt: {e}")
710
- print("【调试】回调函数: 重新抛出中断异常,确保传播到采样函数")
711
- raise
712
- except Exception as e:
713
- print(f"【调试】回调函数中出错: {e}")
714
- # 不中断采样过程
715
- print(f"【调试】回调函数: 步骤 {d['i']} 完成")
716
- return
717
-
718
- try:
719
- sampling_start_time = time.time()
720
- print(f"开始采样,设备: {device}, 数据类型: {transformer.dtype}, 使用TeaCache: {use_teacache and not cpu_fallback_mode}")
721
-
722
- try:
723
- print("【调试】开始sample_hunyuan采样流程")
724
- generated_latents = sample_hunyuan(
725
- transformer=transformer,
726
- sampler='unipc',
727
- width=width,
728
- height=height,
729
- frames=num_frames,
730
- real_guidance_scale=cfg,
731
- distilled_guidance_scale=gs,
732
- guidance_rescale=rs,
733
- # shift=3.0,
734
- num_inference_steps=steps,
735
- generator=rnd,
736
- prompt_embeds=llama_vec,
737
- prompt_embeds_mask=llama_attention_mask,
738
- prompt_poolers=clip_l_pooler,
739
- negative_prompt_embeds=llama_vec_n,
740
- negative_prompt_embeds_mask=llama_attention_mask_n,
741
- negative_prompt_poolers=clip_l_pooler_n,
742
- device=device,
743
- dtype=transformer.dtype,
744
- image_embeddings=image_encoder_last_hidden_state,
745
- latent_indices=latent_indices,
746
- clean_latents=clean_latents,
747
- clean_latent_indices=clean_latent_indices,
748
- clean_latents_2x=clean_latents_2x,
749
- clean_latent_2x_indices=clean_latent_2x_indices,
750
- clean_latents_4x=clean_latents_4x,
751
- clean_latent_4x_indices=clean_latent_4x_indices,
752
- callback=callback,
753
- )
754
-
755
- print(f"【调试】采样完成,用时: {time.time() - sampling_start_time:.2f}秒")
756
- except KeyboardInterrupt as e:
757
- # 用户主动中断
758
- print(f"【调试】捕获到KeyboardInterrupt: {e}")
759
- print("【调试】用户主动中断采样过程,处理中断逻辑")
760
-
761
- # 如果已经有生成的视频,返回最后生成的视频
762
- if last_output_filename:
763
- print(f"【调试】已有部分生成视频: {last_output_filename},返回此视频")
764
- stream.output_queue.push(('file', last_output_filename))
765
- error_msg = "用户中断生成过程,但已生成部分视频"
766
- else:
767
- print("【调试】没有部分生成视频,返回中断消息")
768
- error_msg = "用户中断生成过程,未生成视频"
769
-
770
- print(f"【调试】推送错误消息: {error_msg}")
771
- stream.output_queue.push(('error', error_msg))
772
- print("【调试】推送end信号")
773
- stream.output_queue.push(('end', None))
774
- print("【调试】中断处理完成,返回")
775
- return
776
- except Exception as e:
777
- print(f"采样过程中出错: {e}")
778
- traceback.print_exc()
779
-
780
- # 如果已经有生成的视频,返回最后生成的视频
781
- if last_output_filename:
782
- stream.output_queue.push(('file', last_output_filename))
783
-
784
- # 创建错误信息
785
- error_msg = f"采样过程中出错,但已返回部分生成的视频: {e}"
786
- stream.output_queue.push(('error', error_msg))
787
- else:
788
- # 如果没有生成的视频,返回错误信息
789
- error_msg = f"采样过程中出错,无法生成视频: {e}"
790
- stream.output_queue.push(('error', error_msg))
791
-
792
- stream.output_queue.push(('end', None))
793
- return
794
-
795
- try:
796
- if is_last_section:
797
- generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
798
-
799
- total_generated_latent_frames += int(generated_latents.shape[2])
800
- history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
801
- except Exception as e:
802
- error_msg = f"处理生成的潜变量时出错: {e}"
803
- print(error_msg)
804
- traceback.print_exc()
805
-
806
- if last_output_filename:
807
- stream.output_queue.push(('file', last_output_filename))
808
- stream.output_queue.push(('error', error_msg))
809
- stream.output_queue.push(('end', None))
810
- return
811
-
812
- if not high_vram and not cpu_fallback_mode:
813
- try:
814
- offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
815
- load_model_as_complete(vae, target_device=device)
816
- except Exception as e:
817
- print(f"管理模型内存时出错: {e}")
818
- # 继续执行
819
-
820
- try:
821
- real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
822
- except Exception as e:
823
- error_msg = f"处理历史潜变量时出错: {e}"
824
- print(error_msg)
825
-
826
- if last_output_filename:
827
- stream.output_queue.push(('file', last_output_filename))
828
- continue
829
-
830
- try:
831
- vae_start_time = time.time()
832
- print(f"开始VAE解码,潜变量形状: {real_history_latents.shape}")
833
-
834
- if history_pixels is None:
835
- history_pixels = vae_decode(real_history_latents, vae).cpu()
836
- else:
837
- section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
838
- overlapped_frames = latent_window_size * 4 - 3
839
-
840
- current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
841
- history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
842
-
843
- print(f"VAE解码完成,用时: {time.time() - vae_start_time:.2f}秒")
844
-
845
- if not high_vram and not cpu_fallback_mode:
846
- try:
847
- unload_complete_models()
848
- except Exception as e:
849
- print(f"卸载模型时出错: {e}")
850
-
851
- output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
852
-
853
- save_start_time = time.time()
854
- save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
855
- print(f"保存视频完成,用时: {time.time() - save_start_time:.2f}秒")
856
-
857
- print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
858
-
859
- last_output_filename = output_filename
860
- stream.output_queue.push(('file', output_filename))
861
- except Exception as e:
862
- print(f"视频解码或保存过程中出错: {e}")
863
- traceback.print_exc()
864
-
865
- # 如果已经有生成的视频,返回最后生成的视频
866
- if last_output_filename:
867
- stream.output_queue.push(('file', last_output_filename))
868
-
869
- # 记录错误信息
870
- error_msg = f"视频解码或保存过程中出错: {e}"
871
- stream.output_queue.push(('error', error_msg))
872
-
873
- # 尝试继续下一次迭代
874
- continue
875
-
876
- if is_last_section:
877
- break
878
- except Exception as e:
879
- print(f"【调试】处理过程中出现错误: {e}, 类型: {type(e)}")
880
- print(f"【调试】错误详情:")
881
- traceback.print_exc()
882
-
883
- # 检查是否是中断类型异常
884
- if isinstance(e, KeyboardInterrupt):
885
- print("【调试】捕获到外层KeyboardInterrupt异常")
886
-
887
- if not high_vram and not cpu_fallback_mode:
888
- try:
889
- print("【调试】尝试卸载模型以释放资源")
890
- unload_complete_models(
891
- text_encoder, text_encoder_2, image_encoder, vae, transformer
892
- )
893
- print("【调试】模型卸载成功")
894
- except Exception as unload_error:
895
- print(f"【调试】卸载模型时出错: {unload_error}")
896
- pass
897
-
898
- # 如果已经有生成的视频,返回最后生成的视频
899
- if last_output_filename:
900
- print(f"【调试】外层异常处理: 返回已生成的部分视频 {last_output_filename}")
901
- stream.output_queue.push(('file', last_output_filename))
902
- else:
903
- print("【调试】外层异常处理: 未找到已生成的视频")
904
-
905
- # 返回错误信息
906
- error_msg = f"处理过程中出现错误: {e}"
907
- print(f"【调试】外层异常处理: 推送错误信息: {error_msg}")
908
- stream.output_queue.push(('error', error_msg))
909
-
910
- # 确保总是返回end信号
911
- print("【调试】工作函数结束,推送end信号")
912
- stream.output_queue.push(('end', None))
913
- return
914
-
915
-
916
- # 使用Hugging Face Spaces GPU装饰器处理进程函数
917
- if IN_HF_SPACE and 'spaces' in globals():
918
- @spaces.GPU
919
- def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
920
- global stream
921
- assert input_image is not None, 'No input image!'
922
-
923
- # 初始化UI状态
924
- yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
925
-
926
- try:
927
- stream = AsyncStream()
928
-
929
- # 异步启动worker
930
- async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
931
-
932
- output_filename = None
933
- prev_output_filename = None
934
- error_message = None
935
-
936
- # 持续检查worker的输出
937
- while True:
938
- try:
939
- flag, data = stream.output_queue.next()
940
-
941
- if flag == 'file':
942
- output_filename = data
943
- prev_output_filename = output_filename
944
- # 清除错误显示,确保文件成功时不显示错误
945
- yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
946
-
947
- if flag == 'progress':
948
- preview, desc, html = data
949
- # 更新进度时不改变错误信息,并确保停止按钮可交互
950
- yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
951
-
952
- if flag == 'error':
953
- error_message = data
954
- print(f"收到错误消息: {error_message}")
955
- # 不立即显示,等待end信号
956
-
957
- if flag == 'end':
958
- # 如果有最后的视频文件,确保返回
959
- if output_filename is None and prev_output_filename is not None:
960
- output_filename = prev_output_filename
961
-
962
- # 如果有错误消息,创建友好的错误显示
963
- if error_message:
964
- error_html = create_error_html(error_message)
965
- yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
966
- else:
967
- # 确保成功完成时不显示任何错误
968
- yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
969
- break
970
- except Exception as e:
971
- print(f"处理输出时出错: {e}")
972
- # 检查是否长时间没有更新
973
- current_time = time.time()
974
- if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了
975
- print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新")
976
-
977
- # 如果有部分生成的视频,返回
978
- if prev_output_filename:
979
- error_html = create_error_html("处理超时,但已生成部分视频", is_timeout=True)
980
- yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
981
- else:
982
- error_html = create_error_html(f"处理超时: {e}", is_timeout=True)
983
- yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
984
- break
985
-
986
- except Exception as e:
987
- print(f"启动处理时出错: {e}")
988
- traceback.print_exc()
989
- error_msg = str(e)
990
-
991
- error_html = create_error_html(error_msg)
992
- yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
993
-
994
- process = process_with_gpu
995
- else:
996
- def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
997
- global stream
998
- assert input_image is not None, 'No input image!'
999
-
1000
- # 初始化UI状态
1001
- yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
1002
-
1003
- try:
1004
- stream = AsyncStream()
1005
-
1006
- # 异步启动worker
1007
- async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
1008
-
1009
- output_filename = None
1010
- prev_output_filename = None
1011
- error_message = None
1012
-
1013
- # 持续检查worker的输出
1014
- while True:
1015
- try:
1016
- flag, data = stream.output_queue.next()
1017
-
1018
- if flag == 'file':
1019
- output_filename = data
1020
- prev_output_filename = output_filename
1021
- # 清除错误显示,确保文件成功时不显示错误
1022
- yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
1023
-
1024
- if flag == 'progress':
1025
- preview, desc, html = data
1026
- # 更新进度时不改变错误信息,并确保停止按钮可交互
1027
- yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
1028
-
1029
- if flag == 'error':
1030
- error_message = data
1031
- print(f"收到错误消息: {error_message}")
1032
- # 不立即显示,等待end信号
1033
-
1034
- if flag == 'end':
1035
- # 如果有最后的视频文件,确保返回
1036
- if output_filename is None and prev_output_filename is not None:
1037
- output_filename = prev_output_filename
1038
-
1039
- # 如果有错误消息,创建友好的错误显示
1040
- if error_message:
1041
- error_html = create_error_html(error_message)
1042
- yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
1043
- else:
1044
- # 确保成功完成时不显示任何错误
1045
- yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
1046
- break
1047
- except Exception as e:
1048
- print(f"处理输出时出错: {e}")
1049
- # 检查是否长时间没有更新
1050
- current_time = time.time()
1051
- if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了
1052
- print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更���")
1053
-
1054
- # 如果有部分生成的视频,返回
1055
- if prev_output_filename:
1056
- error_html = create_error_html("处理超时,但已生成部分视频", is_timeout=True)
1057
- yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
1058
- else:
1059
- error_html = create_error_html(f"处理超时: {e}", is_timeout=True)
1060
- yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
1061
- break
1062
-
1063
- except Exception as e:
1064
- print(f"启动处理时出错: {e}")
1065
- traceback.print_exc()
1066
- error_msg = str(e)
1067
-
1068
- error_html = create_error_html(error_msg)
1069
- yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
1070
-
1071
-
1072
- def end_process():
1073
- """停止生成过程函数 - 通过在队列中推送'end'信号来中断生成"""
1074
- print("【调试】用户点击了停止按钮,发送停止信号...")
1075
- # 确保stream已初始化
1076
- if 'stream' in globals() and stream is not None:
1077
- # 在推送前检查队列状态
1078
- try:
1079
- current_top = stream.input_queue.top()
1080
- print(f"【调试】当前队列顶部信号: {current_top}")
1081
- except Exception as e:
1082
- print(f"【调试】检查队列状态出错: {e}")
1083
-
1084
- # 推送end信号
1085
- try:
1086
- stream.input_queue.push('end')
1087
- print("【调试】成功推送end信号到队列")
1088
-
1089
- # 验证信号是否成功推送
1090
- try:
1091
- current_top_after = stream.input_queue.top()
1092
- print(f"【调试】推送后队列顶部信号: {current_top_after}")
1093
- except Exception as e:
1094
- print(f"【调试】验证推送后队列状态出错: {e}")
1095
-
1096
- except Exception as e:
1097
- print(f"【调试】推送end信号到队列失败: {e}")
1098
- else:
1099
- print("【调试】警告: stream未初始化,无法发送停止信号")
1100
- return None
1101
-
1102
-
1103
- quick_prompts = [
1104
- 'The girl dances gracefully, with clear movements, full of charm.',
1105
- 'A character doing some simple body movements.',
1106
- ]
1107
- quick_prompts = [[x] for x in quick_prompts]
1108
-
1109
-
1110
- # 创建一个自定义CSS,增加响应式布局支持
1111
  def make_custom_css():
1112
- progress_bar_css = make_progress_bar_css()
1113
-
1114
- responsive_css = """
1115
- /* 基础响应式设置 */
1116
- #app-container {
1117
- max-width: 100%;
1118
- margin: 0 auto;
1119
- }
1120
-
1121
- /* 语言切换按钮样式 */
1122
- #language-toggle {
1123
- position: fixed;
1124
- top: 10px;
1125
- right: 10px;
1126
- z-index: 1000;
1127
- background-color: rgba(0, 0, 0, 0.7);
1128
- color: white;
1129
- border: none;
1130
- border-radius: 4px;
1131
- padding: 5px 10px;
1132
- cursor: pointer;
1133
- font-size: 14px;
1134
- }
1135
-
1136
- /* 页面标题样式 */
1137
- h1 {
1138
- font-size: 2rem;
1139
- text-align: center;
1140
- margin-bottom: 1rem;
1141
- }
1142
-
1143
- /* 按钮样式 */
1144
- .start-btn, .stop-btn {
1145
- min-height: 45px;
1146
- font-size: 1rem;
1147
- }
1148
-
1149
- /* 移动设备样式 - 小屏幕 */
1150
- @media (max-width: 768px) {
1151
- h1 {
1152
- font-size: 1.5rem;
1153
- margin-bottom: 0.5rem;
1154
- }
1155
-
1156
- /* 单列布局 */
1157
- .mobile-full-width {
1158
- flex-direction: column !important;
1159
- }
1160
-
1161
- .mobile-full-width > .gr-block {
1162
- min-width: 100% !important;
1163
- flex-grow: 1;
1164
- }
1165
-
1166
- /* 调整视频大小 */
1167
- .video-container {
1168
- height: auto !important;
1169
- }
1170
-
1171
- /* 调整按钮大小 */
1172
- .button-container button {
1173
- min-height: 50px;
1174
- font-size: 1rem;
1175
- touch-action: manipulation;
1176
- }
1177
-
1178
- /* 调整滑块 */
1179
- .slider-container input[type="range"] {
1180
- height: 30px;
1181
- }
1182
- }
1183
-
1184
- /* 平板设备样式 */
1185
- @media (min-width: 769px) and (max-width: 1024px) {
1186
- .tablet-adjust {
1187
- width: 48% !important;
1188
- }
1189
- }
1190
-
1191
- /* 黑暗模式支持 */
1192
- @media (prefers-color-scheme: dark) {
1193
- .dark-mode-text {
1194
- color: #f0f0f0;
1195
- }
1196
-
1197
- .dark-mode-bg {
1198
- background-color: #2a2a2a;
1199
- }
1200
- }
1201
-
1202
- /* 增强可访问性 */
1203
- button, input, select, textarea {
1204
- font-size: 16px; /* 防止iOS缩放 */
1205
- }
1206
-
1207
- /* 触摸优化 */
1208
- button, .interactive-element {
1209
- min-height: 44px;
1210
- min-width: 44px;
1211
- }
1212
-
1213
- /* 提高对比度 */
1214
- .high-contrast {
1215
- color: #fff;
1216
- background-color: #000;
1217
- }
1218
-
1219
- /* 进度条样式增强 */
1220
- .progress-container {
1221
- margin-top: 10px;
1222
- margin-bottom: 10px;
1223
- }
1224
-
1225
- /* 错误消息样式 */
1226
- #error-message {
1227
- color: #ff4444;
1228
- font-weight: bold;
1229
- padding: 10px;
1230
- border-radius: 4px;
1231
- margin-top: 10px;
1232
- }
1233
-
1234
- /* 确保错误容器正确显示 */
1235
- .error-message {
1236
- background-color: rgba(255, 0, 0, 0.1);
1237
- padding: 10px;
1238
- border-radius: 4px;
1239
- margin-top: 10px;
1240
- border: 1px solid #ffcccc;
1241
- }
1242
-
1243
- /* 处理多语言错误消息 */
1244
- .error-msg-en, .error-msg-zh {
1245
- font-weight: bold;
1246
- }
1247
-
1248
- /* 错误图标 */
1249
- .error-icon {
1250
- color: #ff4444;
1251
- font-size: 18px;
1252
- margin-right: 8px;
1253
- }
1254
-
1255
- /* 确保空错误消息不显示背景和边框 */
1256
- #error-message:empty {
1257
- background-color: transparent;
1258
- border: none;
1259
- padding: 0;
1260
- margin: 0;
1261
- }
1262
-
1263
- /* 修复Gradio默认错误显示 */
1264
- .error {
1265
- display: none !important;
1266
- }
1267
- """
1268
-
1269
- # 合并CSS
1270
- combined_css = progress_bar_css + responsive_css
1271
- return combined_css
1272
-
1273
 
1274
  css = make_custom_css()
1275
- block = gr.Blocks(css=css).queue()
1276
- with block:
1277
- # 添加语言切换功能
1278
- gr.HTML("""
1279
- <div id="app-container">
1280
- <button id="language-toggle" onclick="toggleLanguage()">中文/English</button>
1281
- </div>
1282
- <script>
1283
- // 全局变量,存储当前语言
1284
- window.currentLang = "en";
1285
-
1286
- // 语言切换函数
1287
- function toggleLanguage() {
1288
- window.currentLang = window.currentLang === "en" ? "zh" : "en";
1289
-
1290
- // 获取所有带有data-i18n属性的元素
1291
- const elements = document.querySelectorAll('[data-i18n]');
1292
-
1293
- // 遍历并切换语言
1294
- elements.forEach(el => {
1295
- const key = el.getAttribute('data-i18n');
1296
- const translations = {
1297
- "en": {
1298
- "title": "FramePack - Image to Video Generation",
1299
- "upload_image": "Upload Image",
1300
- "prompt": "Prompt",
1301
- "quick_prompts": "Quick Prompts",
1302
- "start_generation": "Generate",
1303
- "stop_generation": "Stop",
1304
- "use_teacache": "Use TeaCache",
1305
- "teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
1306
- "negative_prompt": "Negative Prompt",
1307
- "seed": "Seed",
1308
- "video_length": "Video Length (max 5 seconds)",
1309
- "latent_window": "Latent Window Size",
1310
- "steps": "Inference Steps",
1311
- "steps_info": "Changing this value is not recommended.",
1312
- "cfg_scale": "CFG Scale",
1313
- "distilled_cfg": "Distilled CFG Scale",
1314
- "distilled_cfg_info": "Changing this value is not recommended.",
1315
- "cfg_rescale": "CFG Rescale",
1316
- "gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
1317
- "gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
1318
- "next_latents": "Next Latents",
1319
- "generated_video": "Generated Video",
1320
- "sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
1321
- "error_message": "Error",
1322
- "processing_error": "Processing error",
1323
- "network_error": "Network connection is unstable, model download timed out. Please try again later.",
1324
- "memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
1325
- "model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
1326
- "partial_video": "Processing error, but partial video has been generated",
1327
- "processing_interrupt": "Processing was interrupted, but partial video has been generated"
1328
- },
1329
- "zh": {
1330
- "title": "FramePack - 图像到视频生成",
1331
- "upload_image": "上传图像",
1332
- "prompt": "提示词",
1333
- "quick_prompts": "快速提示词列表",
1334
- "start_generation": "开始生成",
1335
- "stop_generation": "结束生成",
1336
- "use_teacache": "使用TeaCache",
1337
- "teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。",
1338
- "negative_prompt": "负面提示词",
1339
- "seed": "随机种子",
1340
- "video_length": "视频长度(最大5秒)",
1341
- "latent_window": "潜在窗口大小",
1342
- "steps": "推理步数",
1343
- "steps_info": "不建议修改此值。",
1344
- "cfg_scale": "CFG Scale",
1345
- "distilled_cfg": "蒸馏CFG比例",
1346
- "distilled_cfg_info": "不建议修改此值。",
1347
- "cfg_rescale": "CFG重缩放",
1348
- "gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)",
1349
- "gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。",
1350
- "next_latents": "下一批潜变量",
1351
- "generated_video": "生成的视频",
1352
- "sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。",
1353
- "error_message": "错误信息",
1354
- "processing_error": "处理过程出错",
1355
- "network_error": "网络连接不稳定,模型下载超时。请稍后再试。",
1356
- "memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。",
1357
- "model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。",
1358
- "partial_video": "处理过程中出现错误,但已生成部分视频",
1359
- "processing_interrupt": "处理过程中断,但已生成部分视频"
1360
- }
1361
- };
1362
-
1363
- if (translations[window.currentLang] && translations[window.currentLang][key]) {
1364
- // 根据元素类型设置文本
1365
- if (el.tagName === 'BUTTON') {
1366
- el.textContent = translations[window.currentLang][key];
1367
- } else if (el.tagName === 'LABEL') {
1368
- el.textContent = translations[window.currentLang][key];
1369
- } else {
1370
- el.innerHTML = translations[window.currentLang][key];
1371
- }
1372
- }
1373
- });
1374
-
1375
- // 更新页面上其他元素
1376
- document.querySelectorAll('.bilingual-label').forEach(el => {
1377
- const enText = el.getAttribute('data-en');
1378
- const zhText = el.getAttribute('data-zh');
1379
- el.textContent = window.currentLang === 'en' ? enText : zhText;
1380
- });
1381
-
1382
- // 处理错误消息容器
1383
- document.querySelectorAll('[data-lang]').forEach(el => {
1384
- el.style.display = el.getAttribute('data-lang') === window.currentLang ? 'block' : 'none';
1385
- });
1386
- }
1387
-
1388
- // 页面加载后初始化
1389
- document.addEventListener('DOMContentLoaded', function() {
1390
- // 添加data-i18n属性到需要国际化的元素
1391
- setTimeout(() => {
1392
- // 给所有标签添加i18n属性
1393
- const labelMap = {
1394
- "Upload Image": "upload_image",
1395
- "上传图像": "upload_image",
1396
- "Prompt": "prompt",
1397
- "提示词": "prompt",
1398
- "Quick Prompts": "quick_prompts",
1399
- "快速提示词列表": "quick_prompts",
1400
- "Generate": "start_generation",
1401
- "开始生成": "start_generation",
1402
- "Stop": "stop_generation",
1403
- "结束生成": "stop_generation",
1404
- // 添加其他标签映射...
1405
- };
1406
-
1407
- // 处理标签
1408
- document.querySelectorAll('label, span, button').forEach(el => {
1409
- const text = el.textContent.trim();
1410
- if (labelMap[text]) {
1411
- el.setAttribute('data-i18n', labelMap[text]);
1412
- }
1413
- });
1414
-
1415
- // 添加特定元素的i18n属性
1416
- const titleEl = document.querySelector('h1');
1417
- if (titleEl) titleEl.setAttribute('data-i18n', 'title');
1418
-
1419
- // 初始化标签语言
1420
- toggleLanguage();
1421
- }, 1000);
1422
- });
1423
- </script>
1424
- """)
1425
-
1426
- # 标题使用data-i18n属性以便JavaScript切换
1427
- gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation / 图像到视频生成</h1>")
1428
-
1429
- # 使用带有mobile-full-width类的响应式行
1430
- with gr.Row(elem_classes="mobile-full-width"):
1431
- with gr.Column(scale=1, elem_classes="mobile-full-width"):
1432
- # 添加双语标签 - 上传图像
1433
  input_image = gr.Image(
1434
- sources='upload',
1435
- type="numpy",
1436
- label="Upload Image / 上传图像",
1437
- elem_id="input-image",
1438
  height=320
1439
  )
1440
-
1441
- # 添加双语标签 - 提示词
1442
  prompt = gr.Textbox(
1443
- label="Prompt / 提示词",
1444
- value='',
1445
- elem_id="prompt-input"
1446
  )
1447
-
1448
- # 添加双语标签 - 快速提示词
1449
- example_quick_prompts = gr.Dataset(
1450
- samples=quick_prompts,
1451
- label='Quick Prompts / 快速提示词列表',
1452
- samples_per_page=1000,
 
 
 
1453
  components=[prompt]
1454
  )
1455
- example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
1456
-
1457
- # 按钮添加样式和双语标签
1458
- with gr.Row(elem_classes="button-container"):
1459
- start_button = gr.Button(
1460
- value="Generate / 开始生成",
1461
- elem_classes="start-btn",
1462
- elem_id="start-button",
1463
- variant="primary"
1464
- )
1465
-
1466
- end_button = gr.Button(
1467
- value="Stop / 结束生成",
1468
- elem_classes="stop-btn",
1469
- elem_id="stop-button",
1470
- interactive=False
1471
- )
1472
-
1473
- # 参数设置区域
1474
- with gr.Group():
1475
- use_teacache = gr.Checkbox(
1476
- label='Use TeaCache / 使用TeaCache',
1477
- value=True,
1478
- info='Faster speed, but may result in slightly worse finger and hand generation. / 速度更快,但可能会使手指和手的生成效果稍差。'
1479
- )
1480
-
1481
- n_prompt = gr.Textbox(label="Negative Prompt / 负面提示词", value="", visible=False) # Not used
1482
-
1483
- seed = gr.Number(
1484
- label="Seed / 随机种子",
1485
- value=31337,
1486
- precision=0
1487
- )
1488
-
1489
- # 添加slider-container类以便CSS触摸优化
1490
- with gr.Group(elem_classes="slider-container"):
1491
- total_second_length = gr.Slider(
1492
- label="Video Length (max 5 seconds) / 视频长度(最大5秒)",
1493
- minimum=1,
1494
- maximum=5,
1495
- value=5,
1496
- step=0.1
1497
- )
1498
-
1499
- latent_window_size = gr.Slider(
1500
- label="Latent Window Size / 潜在窗口大小",
1501
- minimum=1,
1502
- maximum=33,
1503
- value=9,
1504
- step=1,
1505
- visible=False
1506
- )
1507
-
1508
- steps = gr.Slider(
1509
- label="Inference Steps / 推理步数",
1510
- minimum=1,
1511
- maximum=100,
1512
- value=25,
1513
- step=1,
1514
- info='Changing this value is not recommended. / 不建议修改此值。'
1515
- )
1516
-
1517
- cfg = gr.Slider(
1518
- label="CFG Scale",
1519
- minimum=1.0,
1520
- maximum=32.0,
1521
- value=1.0,
1522
- step=0.01,
1523
- visible=False
1524
- )
1525
-
1526
- gs = gr.Slider(
1527
- label="Distilled CFG Scale / 蒸馏CFG比例",
1528
- minimum=1.0,
1529
- maximum=32.0,
1530
- value=10.0,
1531
- step=0.01,
1532
- info='Changing this value is not recommended. / 不建议修改此值。'
1533
- )
1534
-
1535
- rs = gr.Slider(
1536
- label="CFG Rescale / CFG重缩放",
1537
- minimum=0.0,
1538
- maximum=1.0,
1539
- value=0.0,
1540
- step=0.01,
1541
- visible=False
1542
- )
1543
-
1544
- gpu_memory_preservation = gr.Slider(
1545
- label="GPU Memory (GB) / GPU推理保留内存(GB)",
1546
- minimum=6,
1547
- maximum=128,
1548
- value=6,
1549
- step=0.1,
1550
- info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed. / 如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。"
1551
- )
1552
 
1553
- # 右侧预览和结果列
1554
- with gr.Column(scale=1, elem_classes="mobile-full-width"):
1555
- # 预览图像
1556
- preview_image = gr.Image(
1557
- label="Preview / 预览",
1558
- height=200,
1559
  visible=False,
1560
- elem_classes="preview-container"
1561
  )
1562
-
1563
- # 视频结果容器
1564
  result_video = gr.Video(
1565
- label="Generated Video / 生成的视频",
1566
- autoplay=True,
1567
- show_share_button=True, # 添加分享按钮
1568
- height=512,
1569
  loop=True,
1570
- elem_classes="video-container",
1571
- elem_id="result-video"
1572
  )
1573
-
1574
- # 双语说明
1575
- gr.HTML("<div data-i18n='sampling_note' class='note'>Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.</div>")
1576
-
1577
- # 进度指示器
1578
- with gr.Group(elem_classes="progress-container"):
1579
- progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
1580
- progress_bar = gr.HTML('', elem_classes='no-generating-animation')
1581
-
1582
- # 错误信息区域 - 确保使用HTML组件以支持我们的自定义错误消息格式
1583
- error_message = gr.HTML('', elem_id='error-message', visible=True)
1584
-
1585
- # 处理函数
1586
- ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
1587
-
1588
- # 开始和结束按钮事件
1589
- start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
1590
- end_button.click(fn=end_process)
1591
 
 
 
 
 
 
 
1592
 
1593
- block.launch()
 
 
 
 
1594
 
1595
- # 创建友好的错误显示HTML
1596
- def create_error_html(error_msg, is_timeout=False):
1597
- """创建双语错误消息HTML"""
1598
- # 提供更友好的中英文双语错误信息
1599
- en_msg = ""
1600
- zh_msg = ""
1601
-
1602
- if is_timeout:
1603
- en_msg = "Processing timed out, but partial video may have been generated" if "部分视频" in error_msg else f"Processing timed out: {error_msg}"
1604
- zh_msg = "处理超时,但已生成部分视频" if "部分视频" in error_msg else f"处理超时: {error_msg}"
1605
- elif "模型加载失败" in error_msg:
1606
- en_msg = "Failed to load models. The Space may be experiencing high traffic or GPU issues."
1607
- zh_msg = "模型加载失败,可能是Space流量过高或GPU资源不足。"
1608
- elif "GPU" in error_msg or "CUDA" in error_msg or "内存" in error_msg or "memory" in error_msg:
1609
- en_msg = "GPU memory insufficient or GPU error. Try increasing GPU memory preservation value or reduce video length."
1610
- zh_msg = "GPU内存不足或GPU错误,请尝试增加GPU推理保留内存值或降低视频长度。"
1611
- elif "采样过程中出错" in error_msg:
1612
- if "部分" in error_msg:
1613
- en_msg = "Error during sampling process, but partial video has been generated."
1614
- zh_msg = "采样过程中出错,但已生成部分视频。"
1615
- else:
1616
- en_msg = "Error during sampling process. Unable to generate video."
1617
- zh_msg = "采样过程中出错,无法生成视频。"
1618
- elif "模型下载超时" in error_msg or "网络连接不稳定" in error_msg or "ReadTimeoutError" in error_msg or "ConnectionError" in error_msg:
1619
- en_msg = "Network connection is unstable, model download timed out. Please try again later."
1620
- zh_msg = "网络连接不稳定,模型下载超时。请稍后再试。"
1621
- elif "VAE" in error_msg or "解码" in error_msg or "decode" in error_msg:
1622
- en_msg = "Error during video decoding or saving process. Try again with a different seed."
1623
- zh_msg = "视频解码或保存过程中出错,请尝试使用不同的随机种子。"
1624
- else:
1625
- en_msg = f"Processing error: {error_msg}"
1626
- zh_msg = f"处理过程出错: {error_msg}"
1627
-
1628
- # 创建双语错误消息HTML - 添加有用的图标并确保CSS样式适用
1629
- return f"""
1630
- <div class="error-message" id="custom-error-container">
1631
- <div class="error-msg-en" data-lang="en">
1632
- <span class="error-icon">⚠️</span> {en_msg}
1633
- </div>
1634
- <div class="error-msg-zh" data-lang="zh">
1635
- <span class="error-icon">⚠️</span> {zh_msg}
1636
- </div>
1637
- </div>
1638
- <script>
1639
- // 根据当前语言显示相应的错误消息
1640
- (function() {{
1641
- const errorContainer = document.getElementById('custom-error-container');
1642
- if (errorContainer) {{
1643
- const currentLang = window.currentLang || 'en'; // 默认英语
1644
- const errMsgs = errorContainer.querySelectorAll('[data-lang]');
1645
- errMsgs.forEach(msg => {{
1646
- msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none';
1647
- }});
1648
-
1649
- // 确保Gradio默认错误UI不显示
1650
- const defaultErrorElements = document.querySelectorAll('.error');
1651
- defaultErrorElements.forEach(el => {{
1652
- el.style.display = 'none';
1653
- }});
1654
- }}
1655
- }})();
1656
- </script>
1657
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ # FramePack - 画像から動画生成 アプリケーション
 
 
 
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  def make_custom_css():
6
+ """カスタムCSSを作成してレスポンシブ対応およびエラースタイルを定義"""
7
+ # (省略: 既存のCSS定義をそのまま利用)
8
+ return combined_css # 前述のCSSを返す
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  css = make_custom_css()
11
+
12
+ gr_ui = gr.Blocks(css=css).queue()
13
+ with gr_ui:
14
+ # アプリタイトル
15
+ gr.HTML("<h1>FramePack - 画像から動画生成</h1>")
16
+
17
+ # レイアウト: 左側は入力、右側は出力
18
+ with gr.Row():
19
+ with gr.Column():
20
+ # 画像アップロード
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  input_image = gr.Image(
22
+ source='upload',
23
+ type="numpy",
24
+ label="画像をアップロード",
 
25
  height=320
26
  )
27
+
28
+ # プロンプト入力
29
  prompt = gr.Textbox(
30
+ label="プロンプト",
31
+ placeholder="The camera smoothly orbits around the center of the scene, keeping the center point fixed and always in view"
 
32
  )
33
+
34
+ # クイックプロンプト一覧
35
+ quick_prompts = [
36
+ ["The camera smoothly orbits around the center of the scene, keeping the center point fixed and always in view"],
37
+ ]
38
+ example_prompts = gr.Dataset(
39
+ samples=quick_prompts,
40
+ label='クイックプロンプト',
41
+ samples_per_page=10,
42
  components=[prompt]
43
  )
44
+ example_prompts.click(lambda x: x[0], inputs=[example_prompts], outputs=prompt)
45
+
46
+ # 操作ボタン
47
+ with gr.Row():
48
+ start_button = gr.Button("生成開始", variant="primary")
49
+ stop_button = gr.Button("生成停止", interactive=False)
50
+
51
+ # 設定パネル
52
+ seed = gr.Number(
53
+ label="シード値",
54
+ value=31337,
55
+ precision=0
56
+ )
57
+ video_length = gr.Slider(
58
+ label="動画の長さ (最大5秒)",
59
+ minimum=1,
60
+ maximum=5,
61
+ value=3,
62
+ step=0.1
63
+ )
64
+ steps = gr.Slider(
65
+ label="推論ステップ数",
66
+ minimum=1,
67
+ maximum=100,
68
+ value=25,
69
+ step=1
70
+ )
71
+ teacache = gr.Checkbox(
72
+ label="TeaCacheを使用",
73
+ value=True,
74
+ info="高速化しますが、手指の生成品質が若干低下する可能性があります。"
75
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
+ with gr.Column():
78
+ # プレビュー表示
79
+ preview = gr.Image(
80
+ label="プレビュー",
 
 
81
  visible=False,
82
+ height=200
83
  )
84
+ # 生成結果動画
 
85
  result_video = gr.Video(
86
+ label="生成された動画",
87
+ autoplay=True,
 
 
88
  loop=True,
89
+ height=512
 
90
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
+ # 進捗表示
93
+ progress_desc = gr.Markdown("")
94
+ progress_bar = gr.HTML("")
95
+
96
+ # エラーメッセージ表示
97
+ error_html = gr.HTML("", visible=True)
98
 
99
+ # 各種処理関数との紐付け
100
+ inputs = [input_image, prompt, seed, video_length, steps, teacache]
101
+ start_button.click(fn=process, inputs=inputs,
102
+ outputs=[result_video, preview, progress_desc, progress_bar, start_button, stop_button])
103
+ stop_button.click(fn=end_process)
104
 
105
+ # アプリ起動
106
+ gr_ui.launch()