|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from tqdm import tqdm |
|
|
|
|
|
def calculate_fp8_maxval(exp_bits=4, mantissa_bits=3, sign_bits=1): |
|
""" |
|
Calculate the maximum representable value in FP8 format. |
|
Default is E4M3 format (4-bit exponent, 3-bit mantissa, 1-bit sign). |
|
|
|
Args: |
|
exp_bits (int): Number of exponent bits |
|
mantissa_bits (int): Number of mantissa bits |
|
sign_bits (int): Number of sign bits (0 or 1) |
|
|
|
Returns: |
|
float: Maximum value representable in FP8 format |
|
""" |
|
assert exp_bits + mantissa_bits + sign_bits == 8, "Total bits must be 8" |
|
|
|
|
|
bias = 2 ** (exp_bits - 1) - 1 |
|
|
|
|
|
mantissa_max = 1.0 |
|
for i in range(mantissa_bits - 1): |
|
mantissa_max += 2 ** -(i + 1) |
|
|
|
|
|
max_value = mantissa_max * (2 ** (2**exp_bits - 1 - bias)) |
|
|
|
return max_value |
|
|
|
|
|
def quantize_tensor_to_fp8(tensor, scale, exp_bits=4, mantissa_bits=3, sign_bits=1, max_value=None, min_value=None): |
|
""" |
|
Quantize a tensor to FP8 format. |
|
|
|
Args: |
|
tensor (torch.Tensor): Tensor to quantize |
|
scale (float or torch.Tensor): Scale factor |
|
exp_bits (int): Number of exponent bits |
|
mantissa_bits (int): Number of mantissa bits |
|
sign_bits (int): Number of sign bits |
|
|
|
Returns: |
|
tuple: (quantized_tensor, scale_factor) |
|
""" |
|
|
|
scaled_tensor = tensor / scale |
|
|
|
|
|
bias = 2 ** (exp_bits - 1) - 1 |
|
|
|
if max_value is None: |
|
|
|
max_value = calculate_fp8_maxval(exp_bits, mantissa_bits, sign_bits) |
|
min_value = -max_value if sign_bits > 0 else 0.0 |
|
|
|
|
|
clamped_tensor = torch.clamp(scaled_tensor, min_value, max_value) |
|
|
|
|
|
abs_values = torch.abs(clamped_tensor) |
|
nonzero_mask = abs_values > 0 |
|
|
|
|
|
log_scales = torch.zeros_like(clamped_tensor) |
|
if nonzero_mask.any(): |
|
log_scales[nonzero_mask] = torch.floor(torch.log2(abs_values[nonzero_mask]) + bias).detach() |
|
|
|
|
|
log_scales = torch.clamp(log_scales, min=1.0) |
|
quant_factor = 2.0 ** (log_scales - mantissa_bits - bias) |
|
|
|
|
|
quantized = torch.round(clamped_tensor / quant_factor) * quant_factor |
|
|
|
return quantized, scale |
|
|
|
|
|
def optimize_state_dict_with_fp8( |
|
state_dict, calc_device, target_layer_keys=None, exclude_layer_keys=None, exp_bits=4, mantissa_bits=3, move_to_device=False |
|
): |
|
""" |
|
Optimize Linear layer weights in a model's state dict to FP8 format. |
|
|
|
Args: |
|
state_dict (dict): State dict to optimize, replaced in-place |
|
calc_device (str): Device to quantize tensors on |
|
target_layer_keys (list, optional): Layer key patterns to target (None for all Linear layers) |
|
exclude_layer_keys (list, optional): Layer key patterns to exclude |
|
exp_bits (int): Number of exponent bits |
|
mantissa_bits (int): Number of mantissa bits |
|
move_to_device (bool): Move optimized tensors to the calculating device |
|
|
|
Returns: |
|
dict: FP8 optimized state dict |
|
""" |
|
if exp_bits == 4 and mantissa_bits == 3: |
|
fp8_dtype = torch.float8_e4m3fn |
|
elif exp_bits == 5 and mantissa_bits == 2: |
|
fp8_dtype = torch.float8_e5m2 |
|
else: |
|
raise ValueError(f"Unsupported FP8 format: E{exp_bits}M{mantissa_bits}") |
|
|
|
|
|
max_value = calculate_fp8_maxval(exp_bits, mantissa_bits) |
|
min_value = -max_value |
|
|
|
|
|
optimized_count = 0 |
|
|
|
|
|
target_state_dict_keys = [] |
|
for key in state_dict.keys(): |
|
|
|
is_target = (target_layer_keys is None or any(pattern in key for pattern in target_layer_keys)) and key.endswith(".weight") |
|
is_excluded = exclude_layer_keys is not None and any(pattern in key for pattern in exclude_layer_keys) |
|
is_target = is_target and not is_excluded |
|
|
|
if is_target and isinstance(state_dict[key], torch.Tensor): |
|
target_state_dict_keys.append(key) |
|
|
|
|
|
for key in tqdm(target_state_dict_keys): |
|
value = state_dict[key] |
|
|
|
|
|
original_device = value.device |
|
original_dtype = value.dtype |
|
|
|
|
|
if calc_device is not None: |
|
value = value.to(calc_device) |
|
|
|
|
|
scale = torch.max(torch.abs(value.flatten())) / max_value |
|
|
|
|
|
|
|
quantized_weight, _ = quantize_tensor_to_fp8(value, scale, exp_bits, mantissa_bits, 1, max_value, min_value) |
|
|
|
|
|
fp8_key = key |
|
scale_key = key.replace(".weight", ".scale_weight") |
|
|
|
quantized_weight = quantized_weight.to(fp8_dtype) |
|
|
|
if not move_to_device: |
|
quantized_weight = quantized_weight.to(original_device) |
|
|
|
scale_tensor = torch.tensor([scale], dtype=original_dtype, device=quantized_weight.device) |
|
|
|
state_dict[fp8_key] = quantized_weight |
|
state_dict[scale_key] = scale_tensor |
|
|
|
optimized_count += 1 |
|
|
|
if calc_device is not None: |
|
|
|
torch.cuda.empty_cache() |
|
|
|
print(f"Number of optimized Linear layers: {optimized_count}") |
|
return state_dict |
|
|
|
|
|
def fp8_linear_forward_patch(self: nn.Linear, x, use_scaled_mm=False, max_value=None): |
|
""" |
|
Patched forward method for Linear layers with FP8 weights. |
|
|
|
Args: |
|
self: Linear layer instance |
|
x (torch.Tensor): Input tensor |
|
use_scaled_mm (bool): Use scaled_mm for FP8 Linear layers, requires SM 8.9+ (RTX 40 series) |
|
max_value (float): Maximum value for FP8 quantization. If None, no quantization is applied for input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Result of linear transformation |
|
""" |
|
if use_scaled_mm: |
|
input_dtype = x.dtype |
|
original_weight_dtype = self.scale_weight.dtype |
|
weight_dtype = self.weight.dtype |
|
target_dtype = torch.float8_e5m2 |
|
assert weight_dtype == torch.float8_e4m3fn, "Only FP8 E4M3FN format is supported" |
|
assert x.ndim == 3, "Input tensor must be 3D (batch_size, seq_len, hidden_dim)" |
|
|
|
if max_value is None: |
|
|
|
scale_x = torch.tensor(1.0, dtype=torch.float32, device=x.device) |
|
else: |
|
|
|
scale_x = (torch.max(torch.abs(x.flatten())) / max_value).to(torch.float32) |
|
|
|
|
|
x, _ = quantize_tensor_to_fp8(x, scale_x, 5, 2, 1, max_value, -max_value) |
|
|
|
original_shape = x.shape |
|
x = x.reshape(-1, x.shape[2]).to(target_dtype) |
|
|
|
weight = self.weight.t() |
|
scale_weight = self.scale_weight.to(torch.float32) |
|
|
|
if self.bias is not None: |
|
|
|
o = torch._scaled_mm(x, weight, out_dtype=original_weight_dtype, bias=self.bias, scale_a=scale_x, scale_b=scale_weight) |
|
else: |
|
o = torch._scaled_mm(x, weight, out_dtype=input_dtype, scale_a=scale_x, scale_b=scale_weight) |
|
|
|
return o.reshape(original_shape[0], original_shape[1], -1).to(input_dtype) |
|
|
|
else: |
|
|
|
original_dtype = self.scale_weight.dtype |
|
dequantized_weight = self.weight.to(original_dtype) * self.scale_weight |
|
|
|
|
|
if self.bias is not None: |
|
output = F.linear(x, dequantized_weight, self.bias) |
|
else: |
|
output = F.linear(x, dequantized_weight) |
|
|
|
return output |
|
|
|
|
|
def apply_fp8_monkey_patch(model, optimized_state_dict, use_scaled_mm=False): |
|
""" |
|
Apply monkey patching to a model using FP8 optimized state dict. |
|
|
|
Args: |
|
model (nn.Module): Model instance to patch |
|
optimized_state_dict (dict): FP8 optimized state dict |
|
use_scaled_mm (bool): Use scaled_mm for FP8 Linear layers, requires SM 8.9+ (RTX 40 series) |
|
|
|
Returns: |
|
nn.Module: The patched model (same instance, modified in-place) |
|
""" |
|
|
|
|
|
max_value = None |
|
|
|
|
|
scale_keys = [k for k in optimized_state_dict.keys() if k.endswith(".scale_weight")] |
|
|
|
|
|
patched_module_paths = set() |
|
for scale_key in scale_keys: |
|
|
|
module_path = scale_key.rsplit(".scale_weight", 1)[0] |
|
patched_module_paths.add(module_path) |
|
|
|
patched_count = 0 |
|
|
|
|
|
for name, module in model.named_modules(): |
|
|
|
has_scale = name in patched_module_paths |
|
|
|
|
|
if isinstance(module, nn.Linear) and has_scale: |
|
|
|
module.register_buffer("scale_weight", torch.tensor(1.0, dtype=module.weight.dtype)) |
|
|
|
|
|
def new_forward(self, x): |
|
return fp8_linear_forward_patch(self, x, use_scaled_mm, max_value) |
|
|
|
|
|
module.forward = new_forward.__get__(module, type(module)) |
|
|
|
patched_count += 1 |
|
|
|
print(f"Number of monkey-patched Linear layers: {patched_count}") |
|
return model |
|
|