Spaces:
Running
Running
| import gradio as gr | |
| from transformers import DonutProcessor, VisionEncoderDecoderModel | |
| import requests | |
| from PIL import Image | |
| import torch, os, re | |
| torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_40777.png', 'chart_example_1.png') | |
| torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/OECD_SECONDARY_GRADUATION_RATE_ESP_ITA_MEX_000019.png', 'chart_example_2.png') | |
| model_name = "ahmed-masry/unichart-chartqa-960" | |
| model = VisionEncoderDecoderModel.from_pretrained(model_name) | |
| processor = DonutProcessor.from_pretrained(model_name) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| def predict(image, input_prompt): | |
| input_prompt = "<chartqa> " + input_prompt + " <s_answer>" | |
| decoder_input_ids = processor.tokenizer(input_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
| pixel_values = processor(image, return_tensors="pt").pixel_values | |
| outputs = model.generate( | |
| pixel_values.to(device), | |
| decoder_input_ids=decoder_input_ids.to(device), | |
| max_length=model.decoder.config.max_position_embeddings, | |
| early_stopping=True, | |
| pad_token_id=processor.tokenizer.pad_token_id, | |
| eos_token_id=processor.tokenizer.eos_token_id, | |
| use_cache=True, | |
| num_beams=4, | |
| bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
| return_dict_in_generate=True, | |
| ) | |
| sequence = processor.batch_decode(outputs.sequences)[0] | |
| sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
| sequence = sequence.split("<s_answer>")[1].strip() | |
| return sequence | |
| image = gr.components.Image(type="pil", label="Chart Image") | |
| input_prompt = gr.components.Textbox(label="Question") | |
| model_output = gr.components.Textbox(label="Model Output") | |
| examples = [["chart_example_1.png", "What is the lowest value in blue bar?"], | |
| ["chart_example_2.png", "Which country has highest secondary graduation rate in 2018?"]] | |
| title = "Interactive Gradio Demo for UniChart-ChartQA model" | |
| interface = gr.Interface(fn=predict, | |
| inputs=[image, input_prompt], | |
| outputs=model_output, | |
| examples=examples, | |
| title=title, | |
| theme='gradio/soft') | |
| interface.launch() |