Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, LlavaForConditionalGeneration | |
import requests | |
from PIL import Image | |
import torch, os, re, json | |
import spaces | |
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/74801584018932.png', 'chart_example_1.png') | |
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/multi_col_1229.png', 'chart_example_2.png') | |
model = LlavaForConditionalGeneration.from_pretrained("ahmed-masry/ChartInstruct-LLama2", torch_dtype=torch.float16) | |
processor = AutoProcessor.from_pretrained("ahmed-masry/ChartInstruct-LLama2") | |
def predict(image, input_text): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
input_prompt = f"<image>\n Question: {input_text} Answer: " | |
image = image.convert("RGB") | |
inputs = processor(text=input_prompt, images=image, return_tensors="pt") | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# change type if pixel_values in inputs to fp16. | |
inputs['pixel_values'] = inputs['pixel_values'].to(torch.float16) | |
prompt_length = inputs['input_ids'].shape[1] | |
# Generate | |
generate_ids = model.generate(**inputs, num_beams=4, max_new_tokens=512) | |
output_text = processor.batch_decode(generate_ids[:, prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
return output_text | |
image = gr.components.Image(type="pil", label="Chart Image") | |
input_prompt = gr.components.Textbox(label="Input Prompt") | |
model_output = gr.components.Textbox(label="Model Output") | |
examples = [["chart_example_1.png", "Describe the trend of the mortality rates for the Neonatal"], | |
["chart_example_2.png", "What is the share of respondants who prefer Facebook Messenger in the 30-59 age group?"]] | |
title = "Interactive Gradio Demo for ChartInstruct-Llama2 model" | |
interface = gr.Interface(fn=predict, | |
inputs=[image, input_prompt], | |
outputs=model_output, | |
examples=examples, | |
title=title, | |
theme='gradio/soft') | |
interface.launch() |