Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Commit 
							
							Β·
						
						8abeb87
	
1
								Parent(s):
							
							7a9e4f3
								
Adding files
Browse files- 1. Transformer Models.ipynb +691 -0
 - pages/1_π§ _Sentiment Analysis.py +73 -0
 - pages/2_π_Fill Mask.py +31 -0
 - pages/3_π_Zero Shot Classification.py +84 -0
 - pages/4_β_Question Answer.py +31 -0
 - pages/5_βοΈ_Text_Summarization.py +22 -0
 - requirements.txt +4 -0
 - π _Home.py +30 -0
 
    	
        1. Transformer Models.ipynb
    ADDED
    
    | 
         @@ -0,0 +1,691 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
             "cells": [
         
     | 
| 3 | 
         
            +
              {
         
     | 
| 4 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 5 | 
         
            +
               "metadata": {},
         
     | 
| 6 | 
         
            +
               "source": [
         
     | 
| 7 | 
         
            +
                "# TRANSFORMER MODELS"
         
     | 
| 8 | 
         
            +
               ]
         
     | 
| 9 | 
         
            +
              },
         
     | 
| 10 | 
         
            +
              {
         
     | 
| 11 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 12 | 
         
            +
               "metadata": {},
         
     | 
| 13 | 
         
            +
               "source": [
         
     | 
| 14 | 
         
            +
                "## Transformers, what can they do?"
         
     | 
| 15 | 
         
            +
               ]
         
     | 
| 16 | 
         
            +
              },
         
     | 
| 17 | 
         
            +
              {
         
     | 
| 18 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 19 | 
         
            +
               "metadata": {},
         
     | 
| 20 | 
         
            +
               "source": [
         
     | 
| 21 | 
         
            +
                "### Sentiment Analysis"
         
     | 
| 22 | 
         
            +
               ]
         
     | 
| 23 | 
         
            +
              },
         
     | 
| 24 | 
         
            +
              {
         
     | 
| 25 | 
         
            +
               "cell_type": "code",
         
     | 
| 26 | 
         
            +
               "execution_count": 1,
         
     | 
| 27 | 
         
            +
               "metadata": {},
         
     | 
| 28 | 
         
            +
               "outputs": [
         
     | 
| 29 | 
         
            +
                {
         
     | 
| 30 | 
         
            +
                 "name": "stderr",
         
     | 
| 31 | 
         
            +
                 "output_type": "stream",
         
     | 
| 32 | 
         
            +
                 "text": [
         
     | 
| 33 | 
         
            +
                  "No model was supplied, defaulted to distilbert/distilbert-base-uncased-finetuned-sst-2-english and revision 714eb0f (https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english).\n",
         
     | 
| 34 | 
         
            +
                  "Using a pipeline without specifying a model name and revision in production is not recommended.\n"
         
     | 
| 35 | 
         
            +
                 ]
         
     | 
| 36 | 
         
            +
                },
         
     | 
| 37 | 
         
            +
                {
         
     | 
| 38 | 
         
            +
                 "name": "stdout",
         
     | 
| 39 | 
         
            +
                 "output_type": "stream",
         
     | 
| 40 | 
         
            +
                 "text": [
         
     | 
| 41 | 
         
            +
                  "WARNING:tensorflow:From c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tf_keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
         
     | 
| 42 | 
         
            +
                  "\n"
         
     | 
| 43 | 
         
            +
                 ]
         
     | 
| 44 | 
         
            +
                },
         
     | 
| 45 | 
         
            +
                {
         
     | 
| 46 | 
         
            +
                 "data": {
         
     | 
| 47 | 
         
            +
                  "text/plain": [
         
     | 
| 48 | 
         
            +
                   "[{'label': 'POSITIVE', 'score': 0.9598049521446228}]"
         
     | 
| 49 | 
         
            +
                  ]
         
     | 
| 50 | 
         
            +
                 },
         
     | 
| 51 | 
         
            +
                 "execution_count": 1,
         
     | 
| 52 | 
         
            +
                 "metadata": {},
         
     | 
| 53 | 
         
            +
                 "output_type": "execute_result"
         
     | 
| 54 | 
         
            +
                }
         
     | 
| 55 | 
         
            +
               ],
         
     | 
| 56 | 
         
            +
               "source": [
         
     | 
| 57 | 
         
            +
                "from transformers import pipeline\n",
         
     | 
| 58 | 
         
            +
                "\n",
         
     | 
| 59 | 
         
            +
                "classifier = pipeline(\"sentiment-analysis\")\n",
         
     | 
| 60 | 
         
            +
                "classifier(\"I've been waiting for a HuggingFace course my whole life.\")"
         
     | 
| 61 | 
         
            +
               ]
         
     | 
| 62 | 
         
            +
              },
         
     | 
| 63 | 
         
            +
              {
         
     | 
| 64 | 
         
            +
               "cell_type": "code",
         
     | 
| 65 | 
         
            +
               "execution_count": 2,
         
     | 
| 66 | 
         
            +
               "metadata": {},
         
     | 
| 67 | 
         
            +
               "outputs": [
         
     | 
| 68 | 
         
            +
                {
         
     | 
| 69 | 
         
            +
                 "data": {
         
     | 
| 70 | 
         
            +
                  "text/plain": [
         
     | 
| 71 | 
         
            +
                   "[{'label': 'POSITIVE', 'score': 0.9598049521446228},\n",
         
     | 
| 72 | 
         
            +
                   " {'label': 'NEGATIVE', 'score': 0.9994558691978455}]"
         
     | 
| 73 | 
         
            +
                  ]
         
     | 
| 74 | 
         
            +
                 },
         
     | 
| 75 | 
         
            +
                 "execution_count": 2,
         
     | 
| 76 | 
         
            +
                 "metadata": {},
         
     | 
| 77 | 
         
            +
                 "output_type": "execute_result"
         
     | 
| 78 | 
         
            +
                }
         
     | 
| 79 | 
         
            +
               ],
         
     | 
| 80 | 
         
            +
               "source": [
         
     | 
| 81 | 
         
            +
                "# we can pass several sentences\n",
         
     | 
| 82 | 
         
            +
                "classifier(\n",
         
     | 
| 83 | 
         
            +
                "    [\"I've been waiting for a HuggingFace course my whole life.\", \"I hate this so much!\"]\n",
         
     | 
| 84 | 
         
            +
                ")"
         
     | 
| 85 | 
         
            +
               ]
         
     | 
| 86 | 
         
            +
              },
         
     | 
| 87 | 
         
            +
              {
         
     | 
| 88 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 89 | 
         
            +
               "metadata": {},
         
     | 
| 90 | 
         
            +
               "source": [
         
     | 
| 91 | 
         
            +
                "### Zero-shot classification"
         
     | 
| 92 | 
         
            +
               ]
         
     | 
| 93 | 
         
            +
              },
         
     | 
| 94 | 
         
            +
              {
         
     | 
| 95 | 
         
            +
               "cell_type": "code",
         
     | 
| 96 | 
         
            +
               "execution_count": 3,
         
     | 
| 97 | 
         
            +
               "metadata": {},
         
     | 
| 98 | 
         
            +
               "outputs": [
         
     | 
| 99 | 
         
            +
                {
         
     | 
| 100 | 
         
            +
                 "name": "stderr",
         
     | 
| 101 | 
         
            +
                 "output_type": "stream",
         
     | 
| 102 | 
         
            +
                 "text": [
         
     | 
| 103 | 
         
            +
                  "No model was supplied, defaulted to facebook/bart-large-mnli and revision d7645e1 (https://huggingface.co/facebook/bart-large-mnli).\n",
         
     | 
| 104 | 
         
            +
                  "Using a pipeline without specifying a model name and revision in production is not recommended.\n"
         
     | 
| 105 | 
         
            +
                 ]
         
     | 
| 106 | 
         
            +
                },
         
     | 
| 107 | 
         
            +
                {
         
     | 
| 108 | 
         
            +
                 "data": {
         
     | 
| 109 | 
         
            +
                  "application/vnd.jupyter.widget-view+json": {
         
     | 
| 110 | 
         
            +
                   "model_id": "13af57499d894e8aa77c7ed39138d3dd",
         
     | 
| 111 | 
         
            +
                   "version_major": 2,
         
     | 
| 112 | 
         
            +
                   "version_minor": 0
         
     | 
| 113 | 
         
            +
                  },
         
     | 
| 114 | 
         
            +
                  "text/plain": [
         
     | 
| 115 | 
         
            +
                   "model.safetensors:  98%|#########8| 1.60G/1.63G [00:00<?, ?B/s]"
         
     | 
| 116 | 
         
            +
                  ]
         
     | 
| 117 | 
         
            +
                 },
         
     | 
| 118 | 
         
            +
                 "metadata": {},
         
     | 
| 119 | 
         
            +
                 "output_type": "display_data"
         
     | 
| 120 | 
         
            +
                },
         
     | 
| 121 | 
         
            +
                {
         
     | 
| 122 | 
         
            +
                 "name": "stderr",
         
     | 
| 123 | 
         
            +
                 "output_type": "stream",
         
     | 
| 124 | 
         
            +
                 "text": [
         
     | 
| 125 | 
         
            +
                  "c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\huggingface_hub\\file_download.py:147: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\ACER\\.cache\\huggingface\\hub\\models--facebook--bart-large-mnli. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
         
     | 
| 126 | 
         
            +
                  "To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
         
     | 
| 127 | 
         
            +
                  "  warnings.warn(message)\n"
         
     | 
| 128 | 
         
            +
                 ]
         
     | 
| 129 | 
         
            +
                },
         
     | 
| 130 | 
         
            +
                {
         
     | 
| 131 | 
         
            +
                 "data": {
         
     | 
| 132 | 
         
            +
                  "application/vnd.jupyter.widget-view+json": {
         
     | 
| 133 | 
         
            +
                   "model_id": "5184b998013d4eacac2a0e943ebcbfdf",
         
     | 
| 134 | 
         
            +
                   "version_major": 2,
         
     | 
| 135 | 
         
            +
                   "version_minor": 0
         
     | 
| 136 | 
         
            +
                  },
         
     | 
| 137 | 
         
            +
                  "text/plain": [
         
     | 
| 138 | 
         
            +
                   "tokenizer_config.json:   0%|          | 0.00/26.0 [00:00<?, ?B/s]"
         
     | 
| 139 | 
         
            +
                  ]
         
     | 
| 140 | 
         
            +
                 },
         
     | 
| 141 | 
         
            +
                 "metadata": {},
         
     | 
| 142 | 
         
            +
                 "output_type": "display_data"
         
     | 
| 143 | 
         
            +
                },
         
     | 
| 144 | 
         
            +
                {
         
     | 
| 145 | 
         
            +
                 "data": {
         
     | 
| 146 | 
         
            +
                  "application/vnd.jupyter.widget-view+json": {
         
     | 
| 147 | 
         
            +
                   "model_id": "af001870e23b4808862f0f4e160327ef",
         
     | 
| 148 | 
         
            +
                   "version_major": 2,
         
     | 
| 149 | 
         
            +
                   "version_minor": 0
         
     | 
| 150 | 
         
            +
                  },
         
     | 
| 151 | 
         
            +
                  "text/plain": [
         
     | 
| 152 | 
         
            +
                   "vocab.json:   0%|          | 0.00/899k [00:00<?, ?B/s]"
         
     | 
| 153 | 
         
            +
                  ]
         
     | 
| 154 | 
         
            +
                 },
         
     | 
| 155 | 
         
            +
                 "metadata": {},
         
     | 
| 156 | 
         
            +
                 "output_type": "display_data"
         
     | 
| 157 | 
         
            +
                },
         
     | 
| 158 | 
         
            +
                {
         
     | 
| 159 | 
         
            +
                 "data": {
         
     | 
| 160 | 
         
            +
                  "application/vnd.jupyter.widget-view+json": {
         
     | 
| 161 | 
         
            +
                   "model_id": "743eb773e873441c813a1d13925215cf",
         
     | 
| 162 | 
         
            +
                   "version_major": 2,
         
     | 
| 163 | 
         
            +
                   "version_minor": 0
         
     | 
| 164 | 
         
            +
                  },
         
     | 
| 165 | 
         
            +
                  "text/plain": [
         
     | 
| 166 | 
         
            +
                   "merges.txt:   0%|          | 0.00/456k [00:00<?, ?B/s]"
         
     | 
| 167 | 
         
            +
                  ]
         
     | 
| 168 | 
         
            +
                 },
         
     | 
| 169 | 
         
            +
                 "metadata": {},
         
     | 
| 170 | 
         
            +
                 "output_type": "display_data"
         
     | 
| 171 | 
         
            +
                },
         
     | 
| 172 | 
         
            +
                {
         
     | 
| 173 | 
         
            +
                 "data": {
         
     | 
| 174 | 
         
            +
                  "application/vnd.jupyter.widget-view+json": {
         
     | 
| 175 | 
         
            +
                   "model_id": "f29eb797c99242558fe742a00411262c",
         
     | 
| 176 | 
         
            +
                   "version_major": 2,
         
     | 
| 177 | 
         
            +
                   "version_minor": 0
         
     | 
| 178 | 
         
            +
                  },
         
     | 
| 179 | 
         
            +
                  "text/plain": [
         
     | 
| 180 | 
         
            +
                   "tokenizer.json:   0%|          | 0.00/1.36M [00:00<?, ?B/s]"
         
     | 
| 181 | 
         
            +
                  ]
         
     | 
| 182 | 
         
            +
                 },
         
     | 
| 183 | 
         
            +
                 "metadata": {},
         
     | 
| 184 | 
         
            +
                 "output_type": "display_data"
         
     | 
| 185 | 
         
            +
                },
         
     | 
| 186 | 
         
            +
                {
         
     | 
| 187 | 
         
            +
                 "data": {
         
     | 
| 188 | 
         
            +
                  "text/plain": [
         
     | 
| 189 | 
         
            +
                   "{'sequence': 'This is a course about the Transformers library.',\n",
         
     | 
| 190 | 
         
            +
                   " 'labels': ['education', 'business', 'politics'],\n",
         
     | 
| 191 | 
         
            +
                   " 'scores': [0.8719874024391174, 0.09406554698944092, 0.033947039395570755]}"
         
     | 
| 192 | 
         
            +
                  ]
         
     | 
| 193 | 
         
            +
                 },
         
     | 
| 194 | 
         
            +
                 "execution_count": 3,
         
     | 
| 195 | 
         
            +
                 "metadata": {},
         
     | 
| 196 | 
         
            +
                 "output_type": "execute_result"
         
     | 
| 197 | 
         
            +
                }
         
     | 
| 198 | 
         
            +
               ],
         
     | 
| 199 | 
         
            +
               "source": [
         
     | 
| 200 | 
         
            +
                "from transformers import pipeline\n",
         
     | 
| 201 | 
         
            +
                "\n",
         
     | 
| 202 | 
         
            +
                "classifier = pipeline(\"zero-shot-classification\")\n",
         
     | 
| 203 | 
         
            +
                "\n",
         
     | 
| 204 | 
         
            +
                "classifier(\n",
         
     | 
| 205 | 
         
            +
                "    \"This is a course about the Transformers library.\",\n",
         
     | 
| 206 | 
         
            +
                "    candidate_labels = [\"education\", \"politics\", \"business\"]\n",
         
     | 
| 207 | 
         
            +
                ")"
         
     | 
| 208 | 
         
            +
               ]
         
     | 
| 209 | 
         
            +
              },
         
     | 
| 210 | 
         
            +
              {
         
     | 
| 211 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 212 | 
         
            +
               "metadata": {},
         
     | 
| 213 | 
         
            +
               "source": [
         
     | 
| 214 | 
         
            +
                "### Text generation"
         
     | 
| 215 | 
         
            +
               ]
         
     | 
| 216 | 
         
            +
              },
         
     | 
| 217 | 
         
            +
              {
         
     | 
| 218 | 
         
            +
               "cell_type": "code",
         
     | 
| 219 | 
         
            +
               "execution_count": 4,
         
     | 
| 220 | 
         
            +
               "metadata": {},
         
     | 
| 221 | 
         
            +
               "outputs": [
         
     | 
| 222 | 
         
            +
                {
         
     | 
| 223 | 
         
            +
                 "name": "stderr",
         
     | 
| 224 | 
         
            +
                 "output_type": "stream",
         
     | 
| 225 | 
         
            +
                 "text": [
         
     | 
| 226 | 
         
            +
                  "No model was supplied, defaulted to openai-community/gpt2 and revision 607a30d (https://huggingface.co/openai-community/gpt2).\n",
         
     | 
| 227 | 
         
            +
                  "Using a pipeline without specifying a model name and revision in production is not recommended.\n",
         
     | 
| 228 | 
         
            +
                  "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
         
     | 
| 229 | 
         
            +
                 ]
         
     | 
| 230 | 
         
            +
                },
         
     | 
| 231 | 
         
            +
                {
         
     | 
| 232 | 
         
            +
                 "data": {
         
     | 
| 233 | 
         
            +
                  "text/plain": [
         
     | 
| 234 | 
         
            +
                   "[{'generated_text': 'In this course, we will teach you how to build a custom script and a WebScript web server that uses the JQuery 4.3 framework.\\n\\nYou will run up to 60 minutes with a single setup, in our example JQuery J'}]"
         
     | 
| 235 | 
         
            +
                  ]
         
     | 
| 236 | 
         
            +
                 },
         
     | 
| 237 | 
         
            +
                 "execution_count": 4,
         
     | 
| 238 | 
         
            +
                 "metadata": {},
         
     | 
| 239 | 
         
            +
                 "output_type": "execute_result"
         
     | 
| 240 | 
         
            +
                }
         
     | 
| 241 | 
         
            +
               ],
         
     | 
| 242 | 
         
            +
               "source": [
         
     | 
| 243 | 
         
            +
                "from transformers import pipeline\n",
         
     | 
| 244 | 
         
            +
                "\n",
         
     | 
| 245 | 
         
            +
                "generator = pipeline(\"text-generation\")\n",
         
     | 
| 246 | 
         
            +
                "generator(\"In this course, we will teach you how to\")"
         
     | 
| 247 | 
         
            +
               ]
         
     | 
| 248 | 
         
            +
              },
         
     | 
| 249 | 
         
            +
              {
         
     | 
| 250 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 251 | 
         
            +
               "metadata": {},
         
     | 
| 252 | 
         
            +
               "source": [
         
     | 
| 253 | 
         
            +
                "### Using any model from the Hub in a pipeline"
         
     | 
| 254 | 
         
            +
               ]
         
     | 
| 255 | 
         
            +
              },
         
     | 
| 256 | 
         
            +
              {
         
     | 
| 257 | 
         
            +
               "cell_type": "code",
         
     | 
| 258 | 
         
            +
               "execution_count": 5,
         
     | 
| 259 | 
         
            +
               "metadata": {},
         
     | 
| 260 | 
         
            +
               "outputs": [
         
     | 
| 261 | 
         
            +
                {
         
     | 
| 262 | 
         
            +
                 "name": "stderr",
         
     | 
| 263 | 
         
            +
                 "output_type": "stream",
         
     | 
| 264 | 
         
            +
                 "text": [
         
     | 
| 265 | 
         
            +
                  "Truncation was not explicitly activated but `max_length` is provided a specific value, please use `truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy more precisely by providing a specific strategy to `truncation`.\n",
         
     | 
| 266 | 
         
            +
                  "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
         
     | 
| 267 | 
         
            +
                 ]
         
     | 
| 268 | 
         
            +
                },
         
     | 
| 269 | 
         
            +
                {
         
     | 
| 270 | 
         
            +
                 "data": {
         
     | 
| 271 | 
         
            +
                  "text/plain": [
         
     | 
| 272 | 
         
            +
                   "[{'generated_text': 'In this course, we will teach you how to implement an API that can only be used by a single user.\\n\\n\\nHere are the slides'},\n",
         
     | 
| 273 | 
         
            +
                   " {'generated_text': 'In this course, we will teach you how to put food in order to reduce the risk of heart disease and even kill yourself as part of a program'}]"
         
     | 
| 274 | 
         
            +
                  ]
         
     | 
| 275 | 
         
            +
                 },
         
     | 
| 276 | 
         
            +
                 "execution_count": 5,
         
     | 
| 277 | 
         
            +
                 "metadata": {},
         
     | 
| 278 | 
         
            +
                 "output_type": "execute_result"
         
     | 
| 279 | 
         
            +
                }
         
     | 
| 280 | 
         
            +
               ],
         
     | 
| 281 | 
         
            +
               "source": [
         
     | 
| 282 | 
         
            +
                "from transformers import pipeline\n",
         
     | 
| 283 | 
         
            +
                "\n",
         
     | 
| 284 | 
         
            +
                "generator = pipeline(\"text-generation\", model=\"distilgpt2\")\n",
         
     | 
| 285 | 
         
            +
                "\n",
         
     | 
| 286 | 
         
            +
                "generator(\n",
         
     | 
| 287 | 
         
            +
                "    \"In this course, we will teach you how to\",\n",
         
     | 
| 288 | 
         
            +
                "    max_length=30,\n",
         
     | 
| 289 | 
         
            +
                "    num_return_sequences=2)"
         
     | 
| 290 | 
         
            +
               ]
         
     | 
| 291 | 
         
            +
              },
         
     | 
| 292 | 
         
            +
              {
         
     | 
| 293 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 294 | 
         
            +
               "metadata": {},
         
     | 
| 295 | 
         
            +
               "source": [
         
     | 
| 296 | 
         
            +
                "### Mask filling"
         
     | 
| 297 | 
         
            +
               ]
         
     | 
| 298 | 
         
            +
              },
         
     | 
| 299 | 
         
            +
              {
         
     | 
| 300 | 
         
            +
               "cell_type": "code",
         
     | 
| 301 | 
         
            +
               "execution_count": 6,
         
     | 
| 302 | 
         
            +
               "metadata": {},
         
     | 
| 303 | 
         
            +
               "outputs": [
         
     | 
| 304 | 
         
            +
                {
         
     | 
| 305 | 
         
            +
                 "name": "stderr",
         
     | 
| 306 | 
         
            +
                 "output_type": "stream",
         
     | 
| 307 | 
         
            +
                 "text": [
         
     | 
| 308 | 
         
            +
                  "No model was supplied, defaulted to distilbert/distilroberta-base and revision fb53ab8 (https://huggingface.co/distilbert/distilroberta-base).\n",
         
     | 
| 309 | 
         
            +
                  "Using a pipeline without specifying a model name and revision in production is not recommended.\n",
         
     | 
| 310 | 
         
            +
                  "Some weights of the model checkpoint at distilbert/distilroberta-base were not used when initializing RobertaForMaskedLM: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n",
         
     | 
| 311 | 
         
            +
                  "- This IS expected if you are initializing RobertaForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
         
     | 
| 312 | 
         
            +
                  "- This IS NOT expected if you are initializing RobertaForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
         
     | 
| 313 | 
         
            +
                 ]
         
     | 
| 314 | 
         
            +
                },
         
     | 
| 315 | 
         
            +
                {
         
     | 
| 316 | 
         
            +
                 "data": {
         
     | 
| 317 | 
         
            +
                  "text/plain": [
         
     | 
| 318 | 
         
            +
                   "[{'score': 0.19198469817638397,\n",
         
     | 
| 319 | 
         
            +
                   "  'token': 30412,\n",
         
     | 
| 320 | 
         
            +
                   "  'token_str': ' mathematical',\n",
         
     | 
| 321 | 
         
            +
                   "  'sequence': 'This course will teach you all about mathematical models.'},\n",
         
     | 
| 322 | 
         
            +
                   " {'score': 0.04209211468696594,\n",
         
     | 
| 323 | 
         
            +
                   "  'token': 38163,\n",
         
     | 
| 324 | 
         
            +
                   "  'token_str': ' computational',\n",
         
     | 
| 325 | 
         
            +
                   "  'sequence': 'This course will teach you all about computational models.'}]"
         
     | 
| 326 | 
         
            +
                  ]
         
     | 
| 327 | 
         
            +
                 },
         
     | 
| 328 | 
         
            +
                 "execution_count": 6,
         
     | 
| 329 | 
         
            +
                 "metadata": {},
         
     | 
| 330 | 
         
            +
                 "output_type": "execute_result"
         
     | 
| 331 | 
         
            +
                }
         
     | 
| 332 | 
         
            +
               ],
         
     | 
| 333 | 
         
            +
               "source": [
         
     | 
| 334 | 
         
            +
                "from transformers import pipeline\n",
         
     | 
| 335 | 
         
            +
                "\n",
         
     | 
| 336 | 
         
            +
                "unmasker = pipeline(\"fill-mask\")\n",
         
     | 
| 337 | 
         
            +
                "unmasker(\"This course will teach you all about <mask> models.\", top_k=2)"
         
     | 
| 338 | 
         
            +
               ]
         
     | 
| 339 | 
         
            +
              },
         
     | 
| 340 | 
         
            +
              {
         
     | 
| 341 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 342 | 
         
            +
               "metadata": {},
         
     | 
| 343 | 
         
            +
               "source": [
         
     | 
| 344 | 
         
            +
                "### Named Entity Recognition"
         
     | 
| 345 | 
         
            +
               ]
         
     | 
| 346 | 
         
            +
              },
         
     | 
| 347 | 
         
            +
              {
         
     | 
| 348 | 
         
            +
               "cell_type": "code",
         
     | 
| 349 | 
         
            +
               "execution_count": 7,
         
     | 
| 350 | 
         
            +
               "metadata": {},
         
     | 
| 351 | 
         
            +
               "outputs": [
         
     | 
| 352 | 
         
            +
                {
         
     | 
| 353 | 
         
            +
                 "name": "stderr",
         
     | 
| 354 | 
         
            +
                 "output_type": "stream",
         
     | 
| 355 | 
         
            +
                 "text": [
         
     | 
| 356 | 
         
            +
                  "No model was supplied, defaulted to dbmdz/bert-large-cased-finetuned-conll03-english and revision 4c53496 (https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english).\n",
         
     | 
| 357 | 
         
            +
                  "Using a pipeline without specifying a model name and revision in production is not recommended.\n",
         
     | 
| 358 | 
         
            +
                  "Some weights of the model checkpoint at dbmdz/bert-large-cased-finetuned-conll03-english were not used when initializing BertForTokenClassification: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']\n",
         
     | 
| 359 | 
         
            +
                  "- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
         
     | 
| 360 | 
         
            +
                  "- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
         
     | 
| 361 | 
         
            +
                  "c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\pipelines\\token_classification.py:170: UserWarning: `grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to `aggregation_strategy=\"AggregationStrategy.SIMPLE\"` instead.\n",
         
     | 
| 362 | 
         
            +
                  "  warnings.warn(\n"
         
     | 
| 363 | 
         
            +
                 ]
         
     | 
| 364 | 
         
            +
                },
         
     | 
| 365 | 
         
            +
                {
         
     | 
| 366 | 
         
            +
                 "data": {
         
     | 
| 367 | 
         
            +
                  "text/plain": [
         
     | 
| 368 | 
         
            +
                   "[{'entity_group': 'PER',\n",
         
     | 
| 369 | 
         
            +
                   "  'score': 0.99884915,\n",
         
     | 
| 370 | 
         
            +
                   "  'word': 'Ahmad',\n",
         
     | 
| 371 | 
         
            +
                   "  'start': 11,\n",
         
     | 
| 372 | 
         
            +
                   "  'end': 16},\n",
         
     | 
| 373 | 
         
            +
                   " {'entity_group': 'ORG',\n",
         
     | 
| 374 | 
         
            +
                   "  'score': 0.9950792,\n",
         
     | 
| 375 | 
         
            +
                   "  'word': 'University of Engineering and Technology',\n",
         
     | 
| 376 | 
         
            +
                   "  'start': 31,\n",
         
     | 
| 377 | 
         
            +
                   "  'end': 71},\n",
         
     | 
| 378 | 
         
            +
                   " {'entity_group': 'LOC',\n",
         
     | 
| 379 | 
         
            +
                   "  'score': 0.97850055,\n",
         
     | 
| 380 | 
         
            +
                   "  'word': 'Lahore',\n",
         
     | 
| 381 | 
         
            +
                   "  'start': 73,\n",
         
     | 
| 382 | 
         
            +
                   "  'end': 79},\n",
         
     | 
| 383 | 
         
            +
                   " {'entity_group': 'ORG',\n",
         
     | 
| 384 | 
         
            +
                   "  'score': 0.78072757,\n",
         
     | 
| 385 | 
         
            +
                   "  'word': \"Bechelor ' s\",\n",
         
     | 
| 386 | 
         
            +
                   "  'start': 95,\n",
         
     | 
| 387 | 
         
            +
                   "  'end': 105},\n",
         
     | 
| 388 | 
         
            +
                   " {'entity_group': 'ORG',\n",
         
     | 
| 389 | 
         
            +
                   "  'score': 0.92247367,\n",
         
     | 
| 390 | 
         
            +
                   "  'word': 'Computer Science',\n",
         
     | 
| 391 | 
         
            +
                   "  'start': 109,\n",
         
     | 
| 392 | 
         
            +
                   "  'end': 125}]"
         
     | 
| 393 | 
         
            +
                  ]
         
     | 
| 394 | 
         
            +
                 },
         
     | 
| 395 | 
         
            +
                 "execution_count": 7,
         
     | 
| 396 | 
         
            +
                 "metadata": {},
         
     | 
| 397 | 
         
            +
                 "output_type": "execute_result"
         
     | 
| 398 | 
         
            +
                }
         
     | 
| 399 | 
         
            +
               ],
         
     | 
| 400 | 
         
            +
               "source": [
         
     | 
| 401 | 
         
            +
                "from transformers import pipeline\n",
         
     | 
| 402 | 
         
            +
                "\n",
         
     | 
| 403 | 
         
            +
                "ner = pipeline(\"ner\", grouped_entities=True)\n",
         
     | 
| 404 | 
         
            +
                "ner(\"My name is Ahmad and I work at University of Engineering and Technology, Lahore. I was prsuing Bechelor's of Computer Science.\")"
         
     | 
| 405 | 
         
            +
               ]
         
     | 
| 406 | 
         
            +
              },
         
     | 
| 407 | 
         
            +
              {
         
     | 
| 408 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 409 | 
         
            +
               "metadata": {},
         
     | 
| 410 | 
         
            +
               "source": [
         
     | 
| 411 | 
         
            +
                "### Question answering"
         
     | 
| 412 | 
         
            +
               ]
         
     | 
| 413 | 
         
            +
              },
         
     | 
| 414 | 
         
            +
              {
         
     | 
| 415 | 
         
            +
               "cell_type": "code",
         
     | 
| 416 | 
         
            +
               "execution_count": 2,
         
     | 
| 417 | 
         
            +
               "metadata": {},
         
     | 
| 418 | 
         
            +
               "outputs": [
         
     | 
| 419 | 
         
            +
                {
         
     | 
| 420 | 
         
            +
                 "name": "stderr",
         
     | 
| 421 | 
         
            +
                 "output_type": "stream",
         
     | 
| 422 | 
         
            +
                 "text": [
         
     | 
| 423 | 
         
            +
                  "No model was supplied, defaulted to distilbert/distilbert-base-cased-distilled-squad and revision 564e9b5 (https://huggingface.co/distilbert/distilbert-base-cased-distilled-squad).\n",
         
     | 
| 424 | 
         
            +
                  "Using a pipeline without specifying a model name and revision in production is not recommended.\n"
         
     | 
| 425 | 
         
            +
                 ]
         
     | 
| 426 | 
         
            +
                }
         
     | 
| 427 | 
         
            +
               ],
         
     | 
| 428 | 
         
            +
               "source": [
         
     | 
| 429 | 
         
            +
                "from transformers import pipeline\n",
         
     | 
| 430 | 
         
            +
                "\n",
         
     | 
| 431 | 
         
            +
                "question_answerer = pipeline(\"question-answering\")\n",
         
     | 
| 432 | 
         
            +
                "\n",
         
     | 
| 433 | 
         
            +
                "ans = question_answerer(\n",
         
     | 
| 434 | 
         
            +
                "        question=\"where do I work?\",\n",
         
     | 
| 435 | 
         
            +
                "        context = \"My name is Ahmad and I work at University of Engineering and Technology, Lahore\"\n",
         
     | 
| 436 | 
         
            +
                ")"
         
     | 
| 437 | 
         
            +
               ]
         
     | 
| 438 | 
         
            +
              },
         
     | 
| 439 | 
         
            +
              {
         
     | 
| 440 | 
         
            +
               "cell_type": "code",
         
     | 
| 441 | 
         
            +
               "execution_count": 4,
         
     | 
| 442 | 
         
            +
               "metadata": {},
         
     | 
| 443 | 
         
            +
               "outputs": [
         
     | 
| 444 | 
         
            +
                {
         
     | 
| 445 | 
         
            +
                 "data": {
         
     | 
| 446 | 
         
            +
                  "text/plain": [
         
     | 
| 447 | 
         
            +
                   "'University of Engineering and Technology, Lahore'"
         
     | 
| 448 | 
         
            +
                  ]
         
     | 
| 449 | 
         
            +
                 },
         
     | 
| 450 | 
         
            +
                 "execution_count": 4,
         
     | 
| 451 | 
         
            +
                 "metadata": {},
         
     | 
| 452 | 
         
            +
                 "output_type": "execute_result"
         
     | 
| 453 | 
         
            +
                }
         
     | 
| 454 | 
         
            +
               ],
         
     | 
| 455 | 
         
            +
               "source": [
         
     | 
| 456 | 
         
            +
                "ans['answer']"
         
     | 
| 457 | 
         
            +
               ]
         
     | 
| 458 | 
         
            +
              },
         
     | 
| 459 | 
         
            +
              {
         
     | 
| 460 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 461 | 
         
            +
               "metadata": {},
         
     | 
| 462 | 
         
            +
               "source": [
         
     | 
| 463 | 
         
            +
                "### Summarization"
         
     | 
| 464 | 
         
            +
               ]
         
     | 
| 465 | 
         
            +
              },
         
     | 
| 466 | 
         
            +
              {
         
     | 
| 467 | 
         
            +
               "cell_type": "code",
         
     | 
| 468 | 
         
            +
               "execution_count": 9,
         
     | 
| 469 | 
         
            +
               "metadata": {},
         
     | 
| 470 | 
         
            +
               "outputs": [
         
     | 
| 471 | 
         
            +
                {
         
     | 
| 472 | 
         
            +
                 "name": "stderr",
         
     | 
| 473 | 
         
            +
                 "output_type": "stream",
         
     | 
| 474 | 
         
            +
                 "text": [
         
     | 
| 475 | 
         
            +
                  "No model was supplied, defaulted to sshleifer/distilbart-cnn-12-6 and revision a4f8f3e (https://huggingface.co/sshleifer/distilbart-cnn-12-6).\n",
         
     | 
| 476 | 
         
            +
                  "Using a pipeline without specifying a model name and revision in production is not recommended.\n"
         
     | 
| 477 | 
         
            +
                 ]
         
     | 
| 478 | 
         
            +
                }
         
     | 
| 479 | 
         
            +
               ],
         
     | 
| 480 | 
         
            +
               "source": [
         
     | 
| 481 | 
         
            +
                "from transformers import pipeline\n",
         
     | 
| 482 | 
         
            +
                "\n",
         
     | 
| 483 | 
         
            +
                "summarizer = pipeline(\"summarization\")\n",
         
     | 
| 484 | 
         
            +
                "summary = summarizer(\n",
         
     | 
| 485 | 
         
            +
                "    \"\"\"\n",
         
     | 
| 486 | 
         
            +
                "    America has changed dramatically during recent years. Not only has the number of \n",
         
     | 
| 487 | 
         
            +
                "    graduates in traditional engineering disciplines such as mechanical, civil, \n",
         
     | 
| 488 | 
         
            +
                "    electrical, chemical, and aeronautical engineering declined, but in most of \n",
         
     | 
| 489 | 
         
            +
                "    the premier American universities engineering curricula now concentrate on \n",
         
     | 
| 490 | 
         
            +
                "    and encourage largely the study of engineering science. As a result, there \n",
         
     | 
| 491 | 
         
            +
                "    are declining offerings in engineering subjects dealing with infrastructure, \n",
         
     | 
| 492 | 
         
            +
                "    the environment, and related issues, and greater concentration on high \n",
         
     | 
| 493 | 
         
            +
                "    technology subjects, largely supporting increasingly complex scientific \n",
         
     | 
| 494 | 
         
            +
                "    developments. While the latter is important, it should not be at the expense \n",
         
     | 
| 495 | 
         
            +
                "    of more traditional engineering.\n",
         
     | 
| 496 | 
         
            +
                "\n",
         
     | 
| 497 | 
         
            +
                "    Rapidly developing economies such as China and India, as well as other \n",
         
     | 
| 498 | 
         
            +
                "    industrial countries in Europe and Asia, continue to encourage and advance \n",
         
     | 
| 499 | 
         
            +
                "    the teaching of engineering. Both China and India, respectively, graduate \n",
         
     | 
| 500 | 
         
            +
                "    six and eight times as many traditional engineers as does the United States. \n",
         
     | 
| 501 | 
         
            +
                "    Other industrial countries at minimum maintain their output, while America \n",
         
     | 
| 502 | 
         
            +
                "    suffers an increasingly serious decline in the number of engineering graduates \n",
         
     | 
| 503 | 
         
            +
                "    and a lack of well-educated engineers.\n",
         
     | 
| 504 | 
         
            +
                "\"\"\"\n",
         
     | 
| 505 | 
         
            +
                ")"
         
     | 
| 506 | 
         
            +
               ]
         
     | 
| 507 | 
         
            +
              },
         
     | 
| 508 | 
         
            +
              {
         
     | 
| 509 | 
         
            +
               "cell_type": "code",
         
     | 
| 510 | 
         
            +
               "execution_count": 10,
         
     | 
| 511 | 
         
            +
               "metadata": {},
         
     | 
| 512 | 
         
            +
               "outputs": [
         
     | 
| 513 | 
         
            +
                {
         
     | 
| 514 | 
         
            +
                 "name": "stdout",
         
     | 
| 515 | 
         
            +
                 "output_type": "stream",
         
     | 
| 516 | 
         
            +
                 "text": [
         
     | 
| 517 | 
         
            +
                  " America has changed dramatically during recent years . The number of engineering graduates in the U.S. has declined in traditional engineering disciplines such as mechanical, civil,    electrical, chemical, and aeronautical engineering . Rapidly developing economies such as China and India continue to encourage and advance the teaching of engineering .\n"
         
     | 
| 518 | 
         
            +
                 ]
         
     | 
| 519 | 
         
            +
                }
         
     | 
| 520 | 
         
            +
               ],
         
     | 
| 521 | 
         
            +
               "source": [
         
     | 
| 522 | 
         
            +
                "print(summary[0]['summary_text'])"
         
     | 
| 523 | 
         
            +
               ]
         
     | 
| 524 | 
         
            +
              },
         
     | 
| 525 | 
         
            +
              {
         
     | 
| 526 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 527 | 
         
            +
               "metadata": {},
         
     | 
| 528 | 
         
            +
               "source": [
         
     | 
| 529 | 
         
            +
                "### Translation"
         
     | 
| 530 | 
         
            +
               ]
         
     | 
| 531 | 
         
            +
              },
         
     | 
| 532 | 
         
            +
              {
         
     | 
| 533 | 
         
            +
               "cell_type": "code",
         
     | 
| 534 | 
         
            +
               "execution_count": 11,
         
     | 
| 535 | 
         
            +
               "metadata": {},
         
     | 
| 536 | 
         
            +
               "outputs": [],
         
     | 
| 537 | 
         
            +
               "source": [
         
     | 
| 538 | 
         
            +
                "import sentencepiece"
         
     | 
| 539 | 
         
            +
               ]
         
     | 
| 540 | 
         
            +
              },
         
     | 
| 541 | 
         
            +
              {
         
     | 
| 542 | 
         
            +
               "cell_type": "code",
         
     | 
| 543 | 
         
            +
               "execution_count": 12,
         
     | 
| 544 | 
         
            +
               "metadata": {},
         
     | 
| 545 | 
         
            +
               "outputs": [
         
     | 
| 546 | 
         
            +
                {
         
     | 
| 547 | 
         
            +
                 "data": {
         
     | 
| 548 | 
         
            +
                  "application/vnd.jupyter.widget-view+json": {
         
     | 
| 549 | 
         
            +
                   "model_id": "e7521143fb794a39b66b0f5d00f9fac8",
         
     | 
| 550 | 
         
            +
                   "version_major": 2,
         
     | 
| 551 | 
         
            +
                   "version_minor": 0
         
     | 
| 552 | 
         
            +
                  },
         
     | 
| 553 | 
         
            +
                  "text/plain": [
         
     | 
| 554 | 
         
            +
                   "source.spm:   0%|          | 0.00/802k [00:00<?, ?B/s]"
         
     | 
| 555 | 
         
            +
                  ]
         
     | 
| 556 | 
         
            +
                 },
         
     | 
| 557 | 
         
            +
                 "metadata": {},
         
     | 
| 558 | 
         
            +
                 "output_type": "display_data"
         
     | 
| 559 | 
         
            +
                },
         
     | 
| 560 | 
         
            +
                {
         
     | 
| 561 | 
         
            +
                 "name": "stderr",
         
     | 
| 562 | 
         
            +
                 "output_type": "stream",
         
     | 
| 563 | 
         
            +
                 "text": [
         
     | 
| 564 | 
         
            +
                  "c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\huggingface_hub\\file_download.py:147: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\ACER\\.cache\\huggingface\\hub\\models--Helsinki-NLP--opus-mt-fr-en. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
         
     | 
| 565 | 
         
            +
                  "To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
         
     | 
| 566 | 
         
            +
                  "  warnings.warn(message)\n"
         
     | 
| 567 | 
         
            +
                 ]
         
     | 
| 568 | 
         
            +
                },
         
     | 
| 569 | 
         
            +
                {
         
     | 
| 570 | 
         
            +
                 "data": {
         
     | 
| 571 | 
         
            +
                  "application/vnd.jupyter.widget-view+json": {
         
     | 
| 572 | 
         
            +
                   "model_id": "d658b08296d64e4081ac272272b520d7",
         
     | 
| 573 | 
         
            +
                   "version_major": 2,
         
     | 
| 574 | 
         
            +
                   "version_minor": 0
         
     | 
| 575 | 
         
            +
                  },
         
     | 
| 576 | 
         
            +
                  "text/plain": [
         
     | 
| 577 | 
         
            +
                   "target.spm:   0%|          | 0.00/778k [00:00<?, ?B/s]"
         
     | 
| 578 | 
         
            +
                  ]
         
     | 
| 579 | 
         
            +
                 },
         
     | 
| 580 | 
         
            +
                 "metadata": {},
         
     | 
| 581 | 
         
            +
                 "output_type": "display_data"
         
     | 
| 582 | 
         
            +
                },
         
     | 
| 583 | 
         
            +
                {
         
     | 
| 584 | 
         
            +
                 "data": {
         
     | 
| 585 | 
         
            +
                  "application/vnd.jupyter.widget-view+json": {
         
     | 
| 586 | 
         
            +
                   "model_id": "92ea52e7b8d446e7a21d844815c4045b",
         
     | 
| 587 | 
         
            +
                   "version_major": 2,
         
     | 
| 588 | 
         
            +
                   "version_minor": 0
         
     | 
| 589 | 
         
            +
                  },
         
     | 
| 590 | 
         
            +
                  "text/plain": [
         
     | 
| 591 | 
         
            +
                   "vocab.json:   0%|          | 0.00/1.34M [00:00<?, ?B/s]"
         
     | 
| 592 | 
         
            +
                  ]
         
     | 
| 593 | 
         
            +
                 },
         
     | 
| 594 | 
         
            +
                 "metadata": {},
         
     | 
| 595 | 
         
            +
                 "output_type": "display_data"
         
     | 
| 596 | 
         
            +
                },
         
     | 
| 597 | 
         
            +
                {
         
     | 
| 598 | 
         
            +
                 "name": "stderr",
         
     | 
| 599 | 
         
            +
                 "output_type": "stream",
         
     | 
| 600 | 
         
            +
                 "text": [
         
     | 
| 601 | 
         
            +
                  "c:\\Users\\ACER\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\transformers\\models\\marian\\tokenization_marian.py:175: UserWarning: Recommended: pip install sacremoses.\n",
         
     | 
| 602 | 
         
            +
                  "  warnings.warn(\"Recommended: pip install sacremoses.\")\n"
         
     | 
| 603 | 
         
            +
                 ]
         
     | 
| 604 | 
         
            +
                },
         
     | 
| 605 | 
         
            +
                {
         
     | 
| 606 | 
         
            +
                 "data": {
         
     | 
| 607 | 
         
            +
                  "text/plain": [
         
     | 
| 608 | 
         
            +
                   "[{'translation_text': 'This course is produced by Hugging Face.'}]"
         
     | 
| 609 | 
         
            +
                  ]
         
     | 
| 610 | 
         
            +
                 },
         
     | 
| 611 | 
         
            +
                 "execution_count": 12,
         
     | 
| 612 | 
         
            +
                 "metadata": {},
         
     | 
| 613 | 
         
            +
                 "output_type": "execute_result"
         
     | 
| 614 | 
         
            +
                }
         
     | 
| 615 | 
         
            +
               ],
         
     | 
| 616 | 
         
            +
               "source": [
         
     | 
| 617 | 
         
            +
                "import sentencepiece\n",
         
     | 
| 618 | 
         
            +
                "from transformers import pipeline\n",
         
     | 
| 619 | 
         
            +
                "\n",
         
     | 
| 620 | 
         
            +
                "translator = pipeline(\"translation\", model=\"Helsinki-NLP/opus-mt-fr-en\")\n",
         
     | 
| 621 | 
         
            +
                "translator(\"Ce cours est produit par Hugging Face.\")"
         
     | 
| 622 | 
         
            +
               ]
         
     | 
| 623 | 
         
            +
              },
         
     | 
| 624 | 
         
            +
              {
         
     | 
| 625 | 
         
            +
               "cell_type": "markdown",
         
     | 
| 626 | 
         
            +
               "metadata": {},
         
     | 
| 627 | 
         
            +
               "source": [
         
     | 
| 628 | 
         
            +
                "## Bias and limitations"
         
     | 
| 629 | 
         
            +
               ]
         
     | 
| 630 | 
         
            +
              },
         
     | 
| 631 | 
         
            +
              {
         
     | 
| 632 | 
         
            +
               "cell_type": "code",
         
     | 
| 633 | 
         
            +
               "execution_count": 13,
         
     | 
| 634 | 
         
            +
               "metadata": {},
         
     | 
| 635 | 
         
            +
               "outputs": [
         
     | 
| 636 | 
         
            +
                {
         
     | 
| 637 | 
         
            +
                 "name": "stderr",
         
     | 
| 638 | 
         
            +
                 "output_type": "stream",
         
     | 
| 639 | 
         
            +
                 "text": [
         
     | 
| 640 | 
         
            +
                  "BertForMaskedLM has generative capabilities, as `prepare_inputs_for_generation` is explicitly overwritten. However, it doesn't directly inherit from `GenerationMixin`. From πv4.50π onwards, `PreTrainedModel` will NOT inherit from `GenerationMixin`, and this model will lose the ability to call `generate` and other related functions.\n",
         
     | 
| 641 | 
         
            +
                  "  - If you're using `trust_remote_code=True`, you can get rid of this warning by loading the model with an auto class. See https://huggingface.co/docs/transformers/en/model_doc/auto#auto-classes\n",
         
     | 
| 642 | 
         
            +
                  "  - If you are the owner of the model architecture code, please modify your model class such that it inherits from `GenerationMixin` (after `PreTrainedModel`, otherwise you'll get an exception).\n",
         
     | 
| 643 | 
         
            +
                  "  - If you are not the owner of the model architecture class, please contact the model code owner to update it.\n",
         
     | 
| 644 | 
         
            +
                  "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForMaskedLM: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n",
         
     | 
| 645 | 
         
            +
                  "- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
         
     | 
| 646 | 
         
            +
                  "- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
         
     | 
| 647 | 
         
            +
                 ]
         
     | 
| 648 | 
         
            +
                },
         
     | 
| 649 | 
         
            +
                {
         
     | 
| 650 | 
         
            +
                 "name": "stdout",
         
     | 
| 651 | 
         
            +
                 "output_type": "stream",
         
     | 
| 652 | 
         
            +
                 "text": [
         
     | 
| 653 | 
         
            +
                  "['carpenter', 'lawyer', 'farmer', 'businessman', 'doctor']\n",
         
     | 
| 654 | 
         
            +
                  "['nurse', 'maid', 'teacher', 'waitress', 'prostitute']\n"
         
     | 
| 655 | 
         
            +
                 ]
         
     | 
| 656 | 
         
            +
                }
         
     | 
| 657 | 
         
            +
               ],
         
     | 
| 658 | 
         
            +
               "source": [
         
     | 
| 659 | 
         
            +
                "from transformers import pipeline\n",
         
     | 
| 660 | 
         
            +
                "\n",
         
     | 
| 661 | 
         
            +
                "unmasker = pipeline(\"fill-mask\", model=\"bert-base-uncased\")\n",
         
     | 
| 662 | 
         
            +
                "result = unmasker(\"This man works as a [MASK].\")\n",
         
     | 
| 663 | 
         
            +
                "print([r[\"token_str\"] for r in result])\n",
         
     | 
| 664 | 
         
            +
                "\n",
         
     | 
| 665 | 
         
            +
                "result = unmasker(\"This woman works as a [MASK].\")\n",
         
     | 
| 666 | 
         
            +
                "print([r[\"token_str\"] for r in result])"
         
     | 
| 667 | 
         
            +
               ]
         
     | 
| 668 | 
         
            +
              }
         
     | 
| 669 | 
         
            +
             ],
         
     | 
| 670 | 
         
            +
             "metadata": {
         
     | 
| 671 | 
         
            +
              "kernelspec": {
         
     | 
| 672 | 
         
            +
               "display_name": "huggingface-nlp",
         
     | 
| 673 | 
         
            +
               "language": "python",
         
     | 
| 674 | 
         
            +
               "name": "python3"
         
     | 
| 675 | 
         
            +
              },
         
     | 
| 676 | 
         
            +
              "language_info": {
         
     | 
| 677 | 
         
            +
               "codemirror_mode": {
         
     | 
| 678 | 
         
            +
                "name": "ipython",
         
     | 
| 679 | 
         
            +
                "version": 3
         
     | 
| 680 | 
         
            +
               },
         
     | 
| 681 | 
         
            +
               "file_extension": ".py",
         
     | 
| 682 | 
         
            +
               "mimetype": "text/x-python",
         
     | 
| 683 | 
         
            +
               "name": "python",
         
     | 
| 684 | 
         
            +
               "nbconvert_exporter": "python",
         
     | 
| 685 | 
         
            +
               "pygments_lexer": "ipython3",
         
     | 
| 686 | 
         
            +
               "version": "3.10.16"
         
     | 
| 687 | 
         
            +
              }
         
     | 
| 688 | 
         
            +
             },
         
     | 
| 689 | 
         
            +
             "nbformat": 4,
         
     | 
| 690 | 
         
            +
             "nbformat_minor": 2
         
     | 
| 691 | 
         
            +
            }
         
     | 
    	
        pages/1_π§ _Sentiment Analysis.py
    ADDED
    
    | 
         @@ -0,0 +1,73 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            import streamlit as st
         
     | 
| 4 | 
         
            +
            from torch.nn import Softmax
         
     | 
| 5 | 
         
            +
            import plotly.graph_objects as go
         
     | 
| 6 | 
         
            +
            from transformers import AutoConfig, AutoTokenizer
         
     | 
| 7 | 
         
            +
            from transformers import AutoModelForSequenceClassification
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            st.set_page_config(
         
     | 
| 11 | 
         
            +
                page_title="Sentiment Analysis",
         
     | 
| 12 | 
         
            +
                page_icon="π§ ")
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            st.write("# Sentiment Analysis")
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
         
     | 
| 18 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained(MODEL)
         
     | 
| 19 | 
         
            +
            config = AutoConfig.from_pretrained(MODEL)
         
     | 
| 20 | 
         
            +
            model = AutoModelForSequenceClassification.from_pretrained(MODEL)
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            user_input = st.text_input('What\'s in your mind?')
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            if st.button("Perform Sentiment Analysis"):
         
     | 
| 25 | 
         
            +
                if not user_input:
         
     | 
| 26 | 
         
            +
                    st.warning("Please enter some text!")
         
     | 
| 27 | 
         
            +
                else:
         
     | 
| 28 | 
         
            +
                    try:
         
     | 
| 29 | 
         
            +
                        st.write("## Sentiment Plot")
         
     | 
| 30 | 
         
            +
                        encoded_input = tokenizer(user_input, return_tensors='pt')
         
     | 
| 31 | 
         
            +
                        output = model(**encoded_input)
         
     | 
| 32 | 
         
            +
                        scores = output[0][0].detach().numpy()
         
     | 
| 33 | 
         
            +
                        softmax = Softmax(dim=1)
         
     | 
| 34 | 
         
            +
                        scores = softmax(torch.tensor([scores]))
         
     | 
| 35 | 
         
            +
                        scores = scores.numpy()[0]
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                        categories = []
         
     | 
| 38 | 
         
            +
                        probabilities = []
         
     | 
| 39 | 
         
            +
                        ranking = np.argsort(scores)
         
     | 
| 40 | 
         
            +
                        ranking = ranking[::-1]
         
     | 
| 41 | 
         
            +
                        for i in range(scores.shape[0]):
         
     | 
| 42 | 
         
            +
                            categories.append(config.id2label[ranking[i]])
         
     | 
| 43 | 
         
            +
                            probabilities.append(np.round(float(scores[ranking[i]]), 4).tolist())
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                        res = [[cat, sco] for cat,sco in zip(categories, probabilities)]
         
     | 
| 46 | 
         
            +
                        res.sort(key=lambda x: x[0], reverse=True)
         
     | 
| 47 | 
         
            +
                        probabilities = [i[1] for i in res]
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                        # Create the bar chart
         
     | 
| 51 | 
         
            +
                        fig = go.Figure(data=[
         
     | 
| 52 | 
         
            +
                            go.Bar(
         
     | 
| 53 | 
         
            +
                                x=['Positive', 'Neutral', 'Negative'], 
         
     | 
| 54 | 
         
            +
                                y=probabilities, 
         
     | 
| 55 | 
         
            +
                                marker_color=['green', 'blue', 'red'],  # Colors for each category
         
     | 
| 56 | 
         
            +
                                text=probabilities,  # Show values on the bars
         
     | 
| 57 | 
         
            +
                                textposition='auto'
         
     | 
| 58 | 
         
            +
                            )
         
     | 
| 59 | 
         
            +
                        ])
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                        # Customize layout
         
     | 
| 62 | 
         
            +
                        fig.update_layout(
         
     | 
| 63 | 
         
            +
                            # title="Sentiment Analysis Results",
         
     | 
| 64 | 
         
            +
                            xaxis_title="Sentiment Categories",
         
     | 
| 65 | 
         
            +
                            yaxis_title="Probability",
         
     | 
| 66 | 
         
            +
                            template="plotly_white"
         
     | 
| 67 | 
         
            +
                        )
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                        # Show the figure
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                        st.plotly_chart(fig, use_container_width=True)
         
     | 
| 72 | 
         
            +
                    except Exception as e:
         
     | 
| 73 | 
         
            +
                        st.error("An error occurred: " + str(e))
         
     | 
    	
        pages/2_π_Fill Mask.py
    ADDED
    
    | 
         @@ -0,0 +1,31 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import streamlit as st
         
     | 
| 3 | 
         
            +
            from transformers import pipeline
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            st.set_page_config(
         
     | 
| 6 | 
         
            +
                page_title="Fill Mask",
         
     | 
| 7 | 
         
            +
                page_icon="π")
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            st.write("# Fill Mask")
         
     | 
| 10 | 
         
            +
            unmasker = pipeline('fill-mask', model='bert-base-uncased')
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            st.write("Enter a sentence with a masked word using `[MASK]`.")
         
     | 
| 13 | 
         
            +
            user_input = st.text_input("Input your sentence:", "The capital of France is [MASK].")
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            num_responses = st.slider("Select the number of predictions:", min_value=1, max_value=20, value=5)
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            if st.button("Generate Predictions"):
         
     | 
| 18 | 
         
            +
                if "[MASK]" not in user_input:
         
     | 
| 19 | 
         
            +
                    st.error("Please include '[MASK]' in your input sentence.")
         
     | 
| 20 | 
         
            +
                else:
         
     | 
| 21 | 
         
            +
                    try:
         
     | 
| 22 | 
         
            +
                        st.write("### Predictions:")
         
     | 
| 23 | 
         
            +
                        predictions = unmasker(user_input, top_k=num_responses)
         
     | 
| 24 | 
         
            +
                        for i, prediction in enumerate(predictions):
         
     | 
| 25 | 
         
            +
                            token = prediction['token_str']
         
     | 
| 26 | 
         
            +
                            score = prediction['score']
         
     | 
| 27 | 
         
            +
                            user_input_before,user_input_after = user_input.split("[MASK]")
         
     | 
| 28 | 
         
            +
                            user_input_with_token = user_input_before + "`" + token + "`"+ user_input_after
         
     | 
| 29 | 
         
            +
                            st.write(user_input_with_token)
         
     | 
| 30 | 
         
            +
                    except Exception as e:
         
     | 
| 31 | 
         
            +
                        st.error(f"An error occurred: {e}")
         
     | 
    	
        pages/3_π_Zero Shot Classification.py
    ADDED
    
    | 
         @@ -0,0 +1,84 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            import streamlit as st
         
     | 
| 3 | 
         
            +
            import plotly.graph_objects as go
         
     | 
| 4 | 
         
            +
            from transformers import pipeline
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            st.set_page_config(
         
     | 
| 7 | 
         
            +
                page_title="Fill Mask",
         
     | 
| 8 | 
         
            +
                page_icon="π")
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            # App Title
         
     | 
| 11 | 
         
            +
            st.title("Zero-Shot Text Classification")
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            # Initialize the zero-shot classification pipeline
         
     | 
| 14 | 
         
            +
            zero_shot = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            # Colors
         
     | 
| 17 | 
         
            +
            colors = ['rgba(24, 203, 162, 1)', 'rgba(34, 180, 20, 1)', 'rgba(231, 110, 212, 1)', 'rgba(191, 206, 164, 1)', 'rgba(100, 233, 42, 1)', 
         
     | 
| 18 | 
         
            +
                'rgba(185, 222, 92, 1)', 'rgba(27, 157, 138, 1)', 'rgba(212, 207, 155, 1)', 'rgba(172, 202, 164, 1)', 'rgba(47, 65, 177, 1)', 
         
     | 
| 19 | 
         
            +
                'rgba(26, 44, 233, 1)', 'rgba(65, 242, 9, 1)', 'rgba(171, 50, 253, 1)', 'rgba(125, 201, 227, 1)', 'rgba(135, 196, 15, 1)', 
         
     | 
| 20 | 
         
            +
                'rgba(114, 106, 242, 1)', 'rgba(176, 50, 34, 1)', 'rgba(100, 159, 247, 1)', 'rgba(246, 103, 72, 1)', 'rgba(180, 180, 5, 1)', 
         
     | 
| 21 | 
         
            +
                'rgba(64, 29, 164, 1)', 'rgba(65, 192, 5, 1)', 'rgba(149, 97, 155, 1)', 'rgba(210, 2, 107, 1)', 'rgba(70, 203, 162, 1)', 
         
     | 
| 22 | 
         
            +
                'rgba(68, 74, 64, 1)', 'rgba(164, 42, 173, 1)', 'rgba(220, 37, 239, 1)', 'rgba(76, 89, 84, 1)', 'rgba(29, 190, 84, 1)', 
         
     | 
| 23 | 
         
            +
                'rgba(180, 35, 240, 1)', 'rgba(222, 72, 217, 1)', 'rgba(203, 80, 243, 1)', 'rgba(121, 164, 68, 1)', 'rgba(107, 218, 79, 1)', 
         
     | 
| 24 | 
         
            +
                'rgba(152, 225, 65, 1)', 'rgba(57, 170, 43, 1)', 'rgba(77, 131, 61, 1)', 'rgba(145, 101, 161, 1)', 'rgba(115, 77, 3, 1)', 
         
     | 
| 25 | 
         
            +
                'rgba(29, 159, 63, 1)', 'rgba(71, 105, 200, 1)', 'rgba(98, 78, 55, 1)', 'rgba(242, 159, 60, 1)', 'rgba(175, 67, 54, 1)', 
         
     | 
| 26 | 
         
            +
                'rgba(120, 246, 81, 1)', 'rgba(216, 132, 219, 1)', 'rgba(82, 77, 251, 1)', 'rgba(213, 29, 120, 1)', 'rgba(252, 90, 31, 1)', 
         
     | 
| 27 | 
         
            +
                'rgba(194, 181, 168, 1)', 'rgba(246, 60, 189, 1)', 'rgba(22, 50, 26, 1)', 'rgba(54, 11, 134, 1)', 'rgba(27, 103, 59, 1)', 
         
     | 
| 28 | 
         
            +
                'rgba(234, 96, 187, 1)', 'rgba(167, 157, 215, 1)', 'rgba(104, 1, 252, 1)', 'rgba(76, 121, 131, 1)', 'rgba(65, 250, 218, 1)', 
         
     | 
| 29 | 
         
            +
                'rgba(219, 59, 127, 1)', 'rgba(18, 242, 194, 1)', 'rgba(14, 132, 131, 1)', 'rgba(82, 68, 61, 1)', 'rgba(109, 229, 43, 1)', 
         
     | 
| 30 | 
         
            +
                'rgba(202, 96, 66, 1)', 'rgba(216, 112, 64, 1)', 'rgba(101, 215, 114, 1)', 'rgba(85, 234, 109, 1)', 'rgba(17, 43, 113, 1)', 
         
     | 
| 31 | 
         
            +
                'rgba(104, 132, 5, 1)', 'rgba(23, 177, 214, 1)', 'rgba(112, 131, 160, 1)', 'rgba(142, 43, 188, 1)', 'rgba(189, 61, 176, 1)', 
         
     | 
| 32 | 
         
            +
                'rgba(196, 198, 61, 1)', 'rgba(253, 176, 165, 1)', 'rgba(113, 143, 126, 1)', 'rgba(122, 156, 220, 1)', 'rgba(221, 11, 29, 1)', 
         
     | 
| 33 | 
         
            +
                'rgba(233, 200, 5, 1)', 'rgba(232, 176, 217, 1)', 'rgba(199, 6, 130, 1)', 'rgba(140, 118, 154, 1)', 'rgba(177, 46, 36, 1)', 
         
     | 
| 34 | 
         
            +
                'rgba(244, 81, 66, 1)', 'rgba(94, 99, 24, 1)', 'rgba(159, 90, 50, 1)', 'rgba(67, 144, 236, 1)', 'rgba(78, 202, 143, 1)', 
         
     | 
| 35 | 
         
            +
                'rgba(13, 116, 114, 1)', 'rgba(139, 194, 124, 1)', 'rgba(174, 63, 214, 1)', 'rgba(84, 114, 130, 1)', 'rgba(143, 208, 199, 1)', 
         
     | 
| 36 | 
         
            +
                'rgba(27, 60, 225, 1)', 'rgba(69, 228, 28, 1)', 'rgba(167, 157, 10, 1)', 'rgba(61, 185, 55, 1)', 'rgba(143, 52, 233, 1)']
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            colors = np.array(colors)
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            # Input Section
         
     | 
| 41 | 
         
            +
            st.write("Enter a sentence or text to classify and provide possible labels.")
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            user_input = st.text_input("Input your text:", "Streamlit is an amazing tool for building web apps.")
         
     | 
| 44 | 
         
            +
            labels_input = st.text_input("Enter possible labels (comma-separated):", "technology, finance, health")
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            # Process and Display Results
         
     | 
| 47 | 
         
            +
            if st.button("Classify Text"):
         
     | 
| 48 | 
         
            +
                labels = [label.strip().title() for label in labels_input.split(",") if label.strip()]
         
     | 
| 49 | 
         
            +
                if not user_input or not labels:
         
     | 
| 50 | 
         
            +
                    st.error("Please provide both text and at least one label.")
         
     | 
| 51 | 
         
            +
                else:
         
     | 
| 52 | 
         
            +
                    try:
         
     | 
| 53 | 
         
            +
                        st.write("## Classification Results:")
         
     | 
| 54 | 
         
            +
                        probabilities = []
         
     | 
| 55 | 
         
            +
                        result = zero_shot(user_input, labels)
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                        for label, score in zip(result['labels'], result['scores']):
         
     | 
| 58 | 
         
            +
                            probabilities.append(round(score, 2))
         
     | 
| 59 | 
         
            +
                        
         
     | 
| 60 | 
         
            +
                        fig = go.Figure(data=[
         
     | 
| 61 | 
         
            +
                        go.Bar(
         
     | 
| 62 | 
         
            +
                            x=labels, 
         
     | 
| 63 | 
         
            +
                            y=probabilities, 
         
     | 
| 64 | 
         
            +
                            marker_color=np.random.choice(colors, len(labels)).tolist(),  # Colors for each category
         
     | 
| 65 | 
         
            +
                            text=probabilities,  # Show values on the bars
         
     | 
| 66 | 
         
            +
                            textposition='auto'
         
     | 
| 67 | 
         
            +
                        )
         
     | 
| 68 | 
         
            +
                    ])
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    # Customize layout
         
     | 
| 71 | 
         
            +
                        fig.update_layout(
         
     | 
| 72 | 
         
            +
                            # title="Sentiment Analysis Results",
         
     | 
| 73 | 
         
            +
                            xaxis_title="Label",
         
     | 
| 74 | 
         
            +
                            yaxis_title="Probability",
         
     | 
| 75 | 
         
            +
                            template="seaborn",
         
     | 
| 76 | 
         
            +
                        )
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                        # Show the figure
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                        st.plotly_chart(fig, use_container_width=True, theme=None)
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                    except Exception as e:
         
     | 
| 83 | 
         
            +
                            st.error(f"An error occurred: {e}")
         
     | 
| 84 | 
         
            +
                        
         
     | 
    	
        pages/4_β_Question Answer.py
    ADDED
    
    | 
         @@ -0,0 +1,31 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import streamlit as st
         
     | 
| 2 | 
         
            +
            from transformers import pipeline
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            st.set_page_config(
         
     | 
| 6 | 
         
            +
                page_title="Question Answer",
         
     | 
| 7 | 
         
            +
                page_icon="β")
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            # App Name
         
     | 
| 10 | 
         
            +
            st.write("# Question Answer")
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            # Model
         
     | 
| 13 | 
         
            +
            qa_model = pipeline("question-answering", model="distilbert/distilbert-base-cased-distilled-squad")
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            st.write("Provide context and question.")
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            question = st.text_input("Enter your question:")
         
     | 
| 19 | 
         
            +
            context = st.text_input("Enter the context:")
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            if st.button("Generate Answer"):
         
     | 
| 22 | 
         
            +
                if not (question or context):
         
     | 
| 23 | 
         
            +
                    st.warning("Provide both question and context.")
         
     | 
| 24 | 
         
            +
                else:
         
     | 
| 25 | 
         
            +
                    try:
         
     | 
| 26 | 
         
            +
                        st.write("## Answer")
         
     | 
| 27 | 
         
            +
                        ans = qa_model(question=question, context=context)
         
     | 
| 28 | 
         
            +
                        st.write(ans['answer'])
         
     | 
| 29 | 
         
            +
                    except Exception as e:
         
     | 
| 30 | 
         
            +
                        st.error(f"An error occurred: {e}")
         
     | 
| 31 | 
         
            +
                        
         
     | 
    	
        pages/5_βοΈ_Text_Summarization.py
    ADDED
    
    | 
         @@ -0,0 +1,22 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import streamlit as st
         
     | 
| 2 | 
         
            +
            from transformers import pipeline
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            st.set_page_config(
         
     | 
| 6 | 
         
            +
                page_title="Question Answer",
         
     | 
| 7 | 
         
            +
                page_icon="βοΈ")
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            st.write("# Text Summarization")
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            # Model
         
     | 
| 12 | 
         
            +
            summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            user_input = st.text_area("Enter text to summarize")
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            if st.button("Generate Predictions"):
         
     | 
| 17 | 
         
            +
                    try:
         
     | 
| 18 | 
         
            +
                        st.write("## Summary:")
         
     | 
| 19 | 
         
            +
                        generated_summary = summarizer(user_input)
         
     | 
| 20 | 
         
            +
                        st.write(generated_summary[0]["summary_text"])
         
     | 
| 21 | 
         
            +
                    except Exception as e:
         
     | 
| 22 | 
         
            +
                        st.error(f"An error occurred: {e}")
         
     | 
    	
        requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1,4 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            transformers
         
     | 
| 2 | 
         
            +
            streamlit
         
     | 
| 3 | 
         
            +
            torch
         
     | 
| 4 | 
         
            +
            plotly
         
     | 
    	
        π _Home.py
    ADDED
    
    | 
         @@ -0,0 +1,30 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import streamlit as st
         
     | 
| 3 | 
         
            +
            from transformers import pipeline
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            st.set_page_config(
         
     | 
| 6 | 
         
            +
                page_title="Transformers in Action",
         
     | 
| 7 | 
         
            +
                page_icon="π ",
         
     | 
| 8 | 
         
            +
            )
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            st.sidebar.success("Select a Demo above.")
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            st.markdown(
         
     | 
| 13 | 
         
            +
                """
         
     | 
| 14 | 
         
            +
                # **Transformers in Action**  
         
     | 
| 15 | 
         
            +
                **Welcome to the Future of AI!**
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                Discover the incredible power of modern **Transformer models** and how they can revolutionize the way you approach everyday tasks. Whether you want to analyze sentiment, fill in missing text, or classify data with zero-shot precision, this interactive app provides a seamless playground to explore Hugging Face models in action.
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                ### **What Can You Do Here?**  
         
     | 
| 20 | 
         
            +
                π§  **Sentiment Analysis** - Understand emotions in text, from happiness to frustration.  
         
     | 
| 21 | 
         
            +
                π **Fill Mask** - Predict missing words with precision using intelligent language models.  
         
     | 
| 22 | 
         
            +
                π **Zero-Shot Classification** - Classify text into categories without pre-training.  
         
     | 
| 23 | 
         
            +
                β **Question Answering** - Get instant answers to your queries with context-aware AI.  
         
     | 
| 24 | 
         
            +
                βοΈ **Text Summarization** - Condense lengthy content into concise summaries.  
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                **Ready to experience the magic of AI?**  
         
     | 
| 27 | 
         
            +
                Pick a task from the left, explore, and bring your ideas to life!  
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                """
         
     | 
| 30 | 
         
            +
            )
         
     |