Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
import torch | |
model = AutoModelForSeq2SeqLM.from_pretrained("Jayyydyyy/m2m100_418m_tokipona") | |
tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M") | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
LANG_CODES = { | |
"English":"en", | |
"toki pona":"tl" | |
} | |
def translate(text, src_lang, tgt_lang, candidates:int): | |
""" | |
Translate the text from source lang to target lang | |
""" | |
src = LANG_CODES.get(src_lang) | |
tgt = LANG_CODES.get(tgt_lang) | |
tokenizer.src_lang = src | |
tokenizer.tgt_lang = tgt | |
ins = tokenizer(text, return_tensors='pt').to(device) | |
gen_args = { | |
'return_dict_in_generate': True, | |
'output_scores': True, | |
'output_hidden_states': True, | |
'length_penalty': 0.0, # don't encourage longer or shorter output, | |
'num_return_sequences': candidates, | |
'num_beams':candidates, | |
'forced_bos_token_id': tokenizer.lang_code_to_id[tgt] | |
} | |
outs = model.generate(**{**ins, **gen_args}) | |
output = tokenizer.batch_decode(outs.sequences, skip_special_tokens=True) | |
return '\n'.join(output) | |
with gr.Blocks() as app: | |
markdown=""" | |
# An English / toki pona Neural Machine Translation App! | |
### toki a! 💬 | |
This is an english to toki pona / toki pona to english neural machine translation app. | |
Input your text to translate, a source language and target language, and desired number of return sequences! | |
### Grammar Regularization | |
An interesting quirk of training a many-to-many translation model is that pseudo-grammar correction | |
can be achieved by translating *from* **language A** *to* **language A** | |
Remember, this can ***approximate*** grammaticality, but it isn't always the best. | |
For example, "mi li toki e toki pona" (Source Language: toki pona & Target Language: toki pona) will result in: | |
- ['mi toki e toki pona.', 'mi toki pona.', 'mi toki e toki pona'] | |
- (Thus, the ungrammatical "li" is dropped) | |
### Model and Data | |
This app utilizes a fine-tuned version of Facebook/Meta AI's M2M100 418M param model. | |
By leveraging the pretrained weights of the massively multilingual M2M100 model, | |
we can jumpstart our transfer learning to accomplish machine translation for toki pona! | |
The model was fine-tuned on the English/toki pona bitexts found at [https://tatoeba.org/](https://tatoeba.org/) | |
### This app is a work in progress and obviously not all translations will be perfect. | |
In addition to parameter quantity and the hyper-parameters used while training, | |
the *quality of data* found on Tatoeba directly influences the perfomance of projects like this! | |
If you wish to contribute, please add high quality and diverse translations to Tatoeba! | |
""" | |
with gr.Row(): | |
gr.Markdown(markdown) | |
with gr.Column(): | |
input_text = gr.components.Textbox(label="Input Text", value="Raccoons are fascinating creatures, but I prefer opossums.") | |
source_lang = gr.components.Dropdown(label="Source Language", value="English", choices=list(LANG_CODES.keys())) | |
target_lang = gr.components.Dropdown(label="Target Language", value="toki pona", choices=list(LANG_CODES.keys())) | |
return_seqs = gr.Slider(label="Number of return sequences", value=3, minimum=1, maximum=12, step=1) | |
inputs=[input_text, source_lang, target_lang, return_seqs] | |
outputs = gr.Textbox() | |
translate_btn = gr.Button("Translate! | o ante toki!") | |
translate_btn.click(translate, inputs=inputs, outputs=outputs) | |
gr.Examples( | |
[ | |
["Hello! How are you?", "English", "toki pona", 3], | |
["toki a! ilo pi ante toki ni li pona!", "toki pona", "English", 3], | |
["mi li toki e toki pona", "toki pona", "toki pona", 3], | |
], | |
inputs=inputs | |
) | |
app.launch() |