ahmadouna commited on
Commit
cd6a473
1 Parent(s): 3e5cc51

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -23
app.py CHANGED
@@ -39,28 +39,8 @@ if st.button("Analyser le texte"):
39
  result = classifier(text, candidate_labels, hypothesis_template=hypothesis_template)
40
 
41
  if result['labels'][0] == 1:
42
- st.info(f"Résults:good comments ,accuracy {result['scores'][0]*100:.2f}%")
43
  if result['labels'][0] == 0:
44
- st.info(f"Résults: bad comments,accuracy= {result['scores'][0]*100:.2f}%")
45
  else:
46
- st.write("Text Analysis.")
47
-
48
- # Calculer les métriques de performance (vous devez ajuster ces lignes selon votre tâche)
49
- inputs = df["text"].tolist()
50
- true_labels = df["label"].tolist()
51
- predictions = classifier(inputs, candidate_labels, hypothesis_template=hypothesis_template)
52
- predicted_labels = [result['labels'][0] for result in predictions]
53
-
54
- accuracy = accuracy_score(true_labels, predicted_labels)
55
- precision = precision_score(true_labels, predicted_labels, average='binary')
56
- recall = recall_score(true_labels, predicted_labels, average='binary')
57
- f1 = f1_score(true_labels, predicted_labels, average='binary')
58
- balanced_accuracy = balanced_accuracy_score(true_labels, predicted_labels)
59
-
60
- # Afficher les métriques sous forme de tableau
61
- st.header("Evaluation of our models")
62
- metrics_df = pd.DataFrame({
63
- "Métrique": ["Accuracy", "Precision", "Recall", "F1-score", "Balanced Accuracy"],
64
- "Valeur": [accuracy, precision, recall, f1, balanced_accuracy]
65
- })
66
- st.table(metrics_df)
 
39
  result = classifier(text, candidate_labels, hypothesis_template=hypothesis_template)
40
 
41
  if result['labels'][0] == 1:
42
+ st.info(f"Résults Good comments ,accuracy {result['scores'][0]*100:.2f}%")
43
  if result['labels'][0] == 0:
44
+ st.info(f" Bad comments,accuracy= {result['scores'][0]*100:.2f}%")
45
  else:
46
+ st.write("Text Analysis.")