Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import whisper
|
3 |
+
|
4 |
+
# Load the Whisper model
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model():
|
7 |
+
return whisper.load_model("turbo")
|
8 |
+
|
9 |
+
model = load_model()
|
10 |
+
|
11 |
+
# Streamlit app
|
12 |
+
st.title("Audio Transcription App")
|
13 |
+
st.header("Using Whisper for Audio Transcription")
|
14 |
+
|
15 |
+
# File uploader
|
16 |
+
uploaded_file = st.file_uploader("Upload an audio file (e.g., MP3, WAV, etc.)", type=["mp3", "wav", "m4a"])
|
17 |
+
|
18 |
+
if uploaded_file is not None:
|
19 |
+
st.audio(uploaded_file, format="audio/mp3", start_time=0)
|
20 |
+
|
21 |
+
# Transcribe button
|
22 |
+
if st.button("Transcribe Audio"):
|
23 |
+
with st.spinner("Transcribing..."):
|
24 |
+
# Save the uploaded file to a temporary location
|
25 |
+
with open("temp_audio_file.mp3", "wb") as temp_file:
|
26 |
+
temp_file.write(uploaded_file.read())
|
27 |
+
|
28 |
+
# Perform transcription
|
29 |
+
result = model.transcribe("temp_audio_file.mp3")
|
30 |
+
transcription_text = result["text"]
|
31 |
+
|
32 |
+
st.success("Transcription Completed!")
|
33 |
+
st.subheader("Transcription:")
|
34 |
+
st.text_area("Here is the transcription:", transcription_text, height=300)
|
35 |
+
else:
|
36 |
+
st.info("Please upload an audio file to start the transcription.")
|