ahmadluay commited on
Commit
a6c8c66
1 Parent(s): 6f7ed3d

first commit

Browse files
Algerian_forest_fires_dataset_UPDATE.csv ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ day,month,year,Temperature,RH,Ws,Rain,FFMC,DMC,DC,ISI,BUI,FWI,Classes
2
+ 1,6,2012,29,57,18,0,65.7,3.4,7.6,1.3,3.4,0.5,not fire
3
+ 2,6,2012,29,61,13,1.3,64.4,4.1,7.6,1,3.9,0.4,not fire
4
+ 3,6,2012,26,82,22,13.1,47.1,2.5,7.1,0.3,2.7,0.1,not fire
5
+ 4,6,2012,25,89,13,2.5,28.6,1.3,6.9,0,1.7,0,not fire
6
+ 5,6,2012,27,77,16,0,64.8,3,14.2,1.2,3.9,0.5,not fire
7
+ 6,6,2012,31,67,14,0,82.6,5.8,22.2,3.1,7,2.5,fire
8
+ 7,6,2012,33,54,13,0,88.2,9.9,30.5,6.4,10.9,7.2,fire
9
+ 8,6,2012,30,73,15,0,86.6,12.1,38.3,5.6,13.5,7.1,fire
10
+ 9,6,2012,25,88,13,0.2,52.9,7.9,38.8,0.4,10.5,0.3,not fire
11
+ 10,6,2012,28,79,12,0,73.2,9.5,46.3,1.3,12.6,0.9,not fire
12
+ 11,6,2012,31,65,14,0,84.5,12.5,54.3,4,15.8,5.6,fire
13
+ 12,6,2012,26,81,19,0,84,13.8,61.4,4.8,17.7,7.1,fire
14
+ 13,6,2012,27,84,21,1.2,50,6.7,17,0.5,6.7,0.2,not fire
15
+ 14,6,2012,30,78,20,0.5,59,4.6,7.8,1,4.4,0.4,not fire
16
+ 15,6,2012,28,80,17,3.1,49.4,3,7.4,0.4,3,0.1,not fire
17
+ 16,6,2012,29,89,13,0.7,36.1,1.7,7.6,0,2.2,0,not fire
18
+ 17,6,2012,30,89,16,0.6,37.3,1.1,7.8,0,1.6,0,not fire
19
+ 18,6,2012,31,78,14,0.3,56.9,1.9,8,0.7,2.4,0.2,not fire
20
+ 19,6,2012,31,55,16,0.1,79.9,4.5,16,2.5,5.3,1.4,not fire
21
+ 20,6,2012,30,80,16,0.4,59.8,3.4,27.1,0.9,5.1,0.4,not fire
22
+ 21,6,2012,30,78,14,0,81,6.3,31.6,2.6,8.4,2.2,fire
23
+ 22,6,2012,31,67,17,0.1,79.1,7,39.5,2.4,9.7,2.3,not fire
24
+ 23,6,2012,32,62,18,0.1,81.4,8.2,47.7,3.3,11.5,3.8,fire
25
+ 24,6,2012,32,66,17,0,85.9,11.2,55.8,5.6,14.9,7.5,fire
26
+ 25,6,2012,31,64,15,0,86.7,14.2,63.8,5.7,18.3,8.4,fire
27
+ 26,6,2012,31,64,18,0,86.8,17.8,71.8,6.7,21.6,10.6,fire
28
+ 27,6,2012,34,53,18,0,89,21.6,80.3,9.2,25.8,15,fire
29
+ 28,6,2012,32,55,14,0,89.1,25.5,88.5,7.6,29.7,13.9,fire
30
+ 29,6,2012,32,47,13,0.3,79.9,18.4,84.4,2.2,23.8,3.9,not fire
31
+ 30,6,2012,33,50,14,0,88.7,22.9,92.8,7.2,28.3,12.9,fire
32
+ 1,7,2012,29,68,19,1,59.9,2.5,8.6,1.1,2.9,0.4,not fire
33
+ 2,7,2012,27,75,19,1.2,55.7,2.4,8.3,0.8,2.8,0.3,not fire
34
+ 3,7,2012,32,76,20,0.7,63.1,2.6,9.2,1.3,3,0.5,not fire
35
+ 4,7,2012,33,78,17,0,80.1,4.6,18.5,2.7,5.7,1.7,not fire
36
+ 5,7,2012,33,66,14,0,85.9,7.6,27.9,4.8,9.1,4.9,fire
37
+ 6,7,2012,32,63,14,0,87,10.9,37,5.6,12.5,6.8,fire
38
+ 7,7,2012,35,64,18,0.2,80,9.7,40.4,2.8,12.1,3.2,not fire
39
+ 8,7,2012,33,68,19,0,85.6,12.5,49.8,6,15.4,8,fire
40
+ 9,7,2012,32,68,14,1.4,66.6,7.7,9.2,1.1,7.4,0.6,not fire
41
+ 10,7,2012,33,69,13,0.7,66.6,6,9.3,1.1,5.8,0.5,not fire
42
+ 11,7,2012,33,76,14,0,81.1,8.1,18.7,2.6,8.1,2.2,not fire
43
+ 12,7,2012,31,75,13,0.1,75.1,7.9,27.7,1.5,9.2,0.9,not fire
44
+ 13,7,2012,34,81,15,0,81.8,9.7,37.2,3,11.7,3.4,not fire
45
+ 14,7,2012,34,61,13,0.6,73.9,7.8,22.9,1.4,8.4,0.8,not fire
46
+ 15,7,2012,30,80,19,0.4,60.7,5.2,17,1.1,5.9,0.5,not fire
47
+ 16,7,2012,28,76,21,0,72.6,7,25.5,0.7,8.3,0.4,not fire
48
+ 17,7,2012,29,70,14,0,82.8,9.4,34.1,3.2,11.1,3.6,fire
49
+ 18,7,2012,31,68,14,0,85.4,12.1,43.1,4.6,14.2,6,fire
50
+ 19,7,2012,35,59,17,0,88.1,12,52.8,7.7,18.2,10.9,fire
51
+ 20,7,2012,33,65,15,0.1,81.4,12.3,62.1,2.8,16.5,4,fire
52
+ 21,7,2012,33,70,17,0,85.4,18.5,71.5,5.2,22.4,8.8,fire
53
+ 22,7,2012,28,79,18,0.1,73.4,16.4,79.9,1.8,21.7,2.8,not fire
54
+ 23,7,2012,27,66,22,0.4,68.2,10.5,71.3,1.8,15.4,2.1,not fire
55
+ 24,7,2012,28,78,16,0.1,70,9.6,79.7,1.4,14.7,1.3,not fire
56
+ 25,7,2012,31,65,18,0,84.3,12.5,88.7,4.8,18.5,7.3,fire
57
+ 26,7,2012,36,53,19,0,89.2,17.1,98.6,10,23.9,15.3,fire
58
+ 27,7,2012,36,48,13,0,90.3,22.2,108.5,8.7,29.4,15.3,fire
59
+ 28,7,2012,33,76,15,0,86.5,24.4,117.8,5.6,32.1,11.3,fire
60
+ 29,7,2012,32,73,15,0,86.6,26.7,127,5.6,35,11.9,fire
61
+ 30,7,2012,31,79,15,0,85.4,28.5,136,4.7,37.4,10.7,fire
62
+ 31,7,2012,35,64,17,0,87.2,31.9,145.7,6.8,41.2,15.7,fire
63
+ 1,8,2012,36,45,14,0,78.8,4.8,10.2,2,4.7,0.9,not fire
64
+ 2,8,2012,35,55,12,0.4,78,5.8,10,1.7,5.5,0.8,not fire
65
+ 3,8,2012,35,63,14,0.3,76.6,5.7,10,1.7,5.5,0.8,not fire
66
+ 4,8,2012,34,69,13,0,85,8.2,19.8,4,8.2,3.9,fire
67
+ 5,8,2012,34,65,13,0,86.8,11.1,29.7,5.2,11.5,6.1,fire
68
+ 6,8,2012,32,75,14,0,86.4,13,39.1,5.2,14.2,6.8,fire
69
+ 7,8,2012,32,69,16,0,86.5,15.5,48.6,5.5,17.2,8,fire
70
+ 8,8,2012,32,60,18,0.3,77.1,11.3,47,2.2,14.1,2.6,not fire
71
+ 9,8,2012,35,59,17,0,87.4,14.8,57,6.9,17.9,9.9,fire
72
+ 10,8,2012,35,55,14,0,88.9,18.6,67,7.4,21.9,11.6,fire
73
+ 11,8,2012,35,63,13,0,88.9,21.7,77,7.1,25.5,12.1,fire
74
+ 12,8,2012,35,51,13,0.3,81.3,15.6,75.1,2.5,20.7,4.2,not fire
75
+ 13,8,2012,35,63,15,0,87,19,85.1,5.9,24.4,10.2,fire
76
+ 14,8,2012,33,66,14,0,87,21.7,94.7,5.7,27.2,10.6,fire
77
+ 15,8,2012,36,55,13,0.3,82.4,15.6,92.5,3.7,22,6.3,fire
78
+ 16,8,2012,36,61,18,0.3,80.2,11.7,90.4,2.8,17.6,4.2,fire
79
+ 17,8,2012,37,52,18,0,89.3,16,100.7,9.7,22.9,14.6,fire
80
+ 18,8,2012,36,54,18,0,89.4,20,110.9,9.7,27.5,16.1,fire
81
+ 19,8,2012,35,62,19,0,89.4,23.2,120.9,9.7,31.3,17.2,fire
82
+ 20,8,2012,35,68,19,0,88.3,25.9,130.6,8.8,34.7,16.8,fire
83
+ 21,8,2012,36,58,19,0,88.6,29.6,141.1,9.2,38.8,18.4,fire
84
+ 22,8,2012,36,55,18,0,89.1,33.5,151.3,9.9,43.1,20.4,fire
85
+ 23,8,2012,36,53,16,0,89.5,37.6,161.5,10.4,47.5,22.3,fire
86
+ 24,8,2012,34,64,14,0,88.9,40.5,171.3,9,50.9,20.9,fire
87
+ 25,8,2012,35,60,15,0,88.9,43.9,181.3,8.2,54.7,20.3,fire
88
+ 26,8,2012,31,78,18,0,85.8,45.6,190.6,4.7,57.1,13.7,fire
89
+ 27,8,2012,33,82,21,0,84.9,47,200.2,4.4,59.3,13.2,fire
90
+ 28,8,2012,34,64,16,0,89.4,50.2,210.4,7.3,62.9,19.9,fire
91
+ 29,8,2012,35,48,18,0,90.1,54.2,220.4,12.5,67.4,30.2,fire
92
+ 30,8,2012,35,70,17,0.8,72.7,25.2,180.4,1.7,37.4,4.2,not fire
93
+ 31,8,2012,28,80,21,16.8,52.5,8.7,8.7,0.6,8.3,0.3,not fire
94
+ 1,9,2012,25,76,17,7.2,46,1.3,7.5,0.2,1.8,0.1,not fire
95
+ 2,9,2012,22,86,15,10.1,30.5,0.7,7,0,1.1,0,not fire
96
+ 3,9,2012,25,78,15,3.8,42.6,1.2,7.5,0.1,1.7,0,not fire
97
+ 4,9,2012,29,73,17,0.1,68.4,1.9,15.7,1.4,2.9,0.5,not fire
98
+ 5,9,2012,29,75,16,0,80.8,3.4,24,2.8,5.1,1.7,fire
99
+ 6,9,2012,29,74,19,0.1,75.8,3.6,32.2,2.1,5.6,0.9,not fire
100
+ 7,9,2012,31,71,17,0.3,69.6,3.2,30.1,1.5,5.1,0.6,not fire
101
+ 8,9,2012,30,73,17,0.9,62,2.6,8.4,1.1,3,0.4,not fire
102
+ 9,9,2012,30,77,15,1,56.1,2.1,8.4,0.7,2.6,0.2,not fire
103
+ 10,9,2012,33,73,12,1.8,59.9,2.2,8.9,0.7,2.7,0.3,not fire
104
+ 11,9,2012,30,77,21,1.8,58.5,1.9,8.4,1.1,2.4,0.3,not fire
105
+ 12,9,2012,29,88,13,0,71,2.6,16.6,1.2,3.7,0.5,not fire
106
+ 13,9,2012,25,86,21,4.6,40.9,1.3,7.5,0.1,1.8,0,not fire
107
+ 14,9,2012,22,76,26,8.3,47.4,1.1,7,0.4,1.6,0.1,not fire
108
+ 15,9,2012,24,82,15,0.4,44.9,0.9,7.3,0.2,1.4,0,not fire
109
+ 16,9,2012,30,65,14,0,78.1,3.2,15.7,1.9,4.2,0.8,not fire
110
+ 17,9,2012,31,52,14,0,87.7,6.4,24.3,6.2,7.7,5.9,fire
111
+ 18,9,2012,32,49,11,0,89.4,9.8,33.1,6.8,11.3,7.7,fire
112
+ 19,9,2012,29,57,14,0,89.3,12.5,41.3,7.8,14.2,9.7,fire
113
+ 20,9,2012,28,84,18,0,83.8,13.5,49.3,4.5,16,6.3,fire
114
+ 21,9,2012,31,55,11,0,87.8,16.5,57.9,5.4,19.2,8.3,fire
115
+ 22,9,2012,31,50,19,0.6,77.8,10.6,41.4,2.4,12.9,2.8,not fire
116
+ 23,9,2012,32,54,11,0.5,73.7,7.9,30.4,1.2,9.6,0.7,not fire
117
+ 24,9,2012,29,65,19,0.6,68.3,5.5,15.2,1.5,5.8,0.7,not fire
118
+ 25,9,2012,26,81,21,5.8,48.6,3,7.7,0.4,3,0.1,not fire
119
+ 26,9,2012,31,54,11,0,82,6,16.3,2.5,6.2,1.7,not fire
120
+ 27,9,2012,31,66,11,0,85.7,8.3,24.9,4,9,4.1,fire
121
+ 28,9,2012,32,47,14,0.7,77.5,7.1,8.8,1.8,6.8,0.9,not fire
122
+ 29,9,2012,26,80,16,1.8,47.4,2.9,7.7,0.3,3,0.1,not fire
123
+ 30,9,2012,25,78,14,1.4,45,1.9,7.5,0.2,2.4,0.1,not fire
124
+ 1,6,2012,32,71,12,0.7,57.1,2.5,8.2,0.6,2.8,0.2,not fire
125
+ 2,6,2012,30,73,13,4,55.7,2.7,7.8,0.6,2.9,0.2,not fire
126
+ 3,6,2012,29,80,14,2,48.7,2.2,7.6,0.3,2.6,0.1,not fire
127
+ 4,6,2012,30,64,14,0,79.4,5.2,15.4,2.2,5.6,1,not fire
128
+ 5,6,2012,32,60,14,0.2,77.1,6,17.6,1.8,6.5,0.9,not fire
129
+ 6,6,2012,35,54,11,0.1,83.7,8.4,26.3,3.1,9.3,3.1,fire
130
+ 7,6,2012,35,44,17,0.2,85.6,9.9,28.9,5.4,10.7,6,fire
131
+ 8,6,2012,28,51,17,1.3,71.4,7.7,7.4,1.5,7.3,0.8,not fire
132
+ 9,6,2012,27,59,18,0.1,78.1,8.5,14.7,2.4,8.3,1.9,not fire
133
+ 10,6,2012,30,41,15,0,89.4,13.3,22.5,8.4,13.1,10,fire
134
+ 11,6,2012,31,42,21,0,90.6,18.2,30.5,13.4,18,16.7,fire
135
+ 12,6,2012,27,58,17,0,88.9,21.3,37.8,8.7,21.2,12.9,fire
136
+ 13,6,2012,30,52,15,2,72.3,11.4,7.8,1.4,10.9,0.9,not fire
137
+ 14,6,2012,27,79,16,0.7,53.4,6.4,7.3,0.5,6.1,0.3,not fire
138
+ 15,6,2012,28,90,15,0,66.8,7.2,14.7,1.2,7.1,0.6,not fire
139
+ 16,6,2012,29,87,15,0.4,47.4,4.2,8,0.2,4.1,0.1,not fire
140
+ 17,6,2012,31,69,17,4.7,62.2,3.9,8,1.1,3.8,0.4,not fire
141
+ 18,6,2012,33,62,10,8.7,65.5,4.6,8.3,0.9,4.4,0.4,not fire
142
+ 19,6,2012,32,67,14,4.5,64.6,4.4,8.2,1,4.2,0.4,not fire
143
+ 20,6,2012,31,72,14,0.2,60.2,3.8,8,0.8,3.7,0.3,not fire
144
+ 21,6,2012,32,55,14,0,86.2,8.3,18.4,5,8.2,4.9,fire
145
+ 22,6,2012,33,46,14,1.1,78.3,8.1,8.3,1.9,7.7,1.2,not fire
146
+ 23,6,2012,33,59,16,0.8,74.2,7,8.3,1.6,6.7,0.8,not fire
147
+ 24,6,2012,35,68,16,0,85.3,10,17,4.9,9.9,5.3,fire
148
+ 25,6,2012,34,70,16,0,86,12.8,25.6,5.4,12.7,6.7,fire
149
+ 26,6,2012,36,62,16,0,87.8,16.5,34.5,7,16.4,9.5,fire
150
+ 27,6,2012,36,55,15,0,89.1,20.9,43.3,8,20.8,12,fire
151
+ 28,6,2012,37,37,13,0,92.5,27.2,52.4,11.7,27.1,18.4,fire
152
+ 29,6,2012,37,36,13,0.6,86.2,17.9,36.7,4.8,17.8,7.2,fire
153
+ 30,6,2012,34,42,15,1.7,79.7,12,8.5,2.2,11.5,2.2,not fire
154
+ 1,7,2012,28,58,18,2.2,63.7,3.2,8.5,1.2,3.3,0.5,not fire
155
+ 2,7,2012,33,48,16,0,87.6,7.9,17.8,6.8,7.8,6.4,fire
156
+ 3,7,2012,34,56,17,0.1,84.7,9.7,27.3,4.7,10.3,5.2,fire
157
+ 4,7,2012,34,58,18,0,88,13.6,36.8,8,14.1,9.9,fire
158
+ 5,7,2012,34,45,18,0,90.5,18.7,46.4,11.3,18.7,15,fire
159
+ 6,7,2012,35,42,15,0.3,84.7,15.5,45.1,4.3,16.7,6.3,fire
160
+ 7,7,2012,38,43,13,0.5,85,13,35.4,4.1,13.7,5.2,fire
161
+ 8,7,2012,35,47,18,6,80.8,9.8,9.7,3.1,9.4,3,fire
162
+ 9,7,2012,36,43,15,1.9,82.3,9.4,9.9,3.2,9,3.1,fire
163
+ 10,7,2012,34,51,16,3.8,77.5,8,9.5,2,7.7,1.3,not fire
164
+ 11,7,2012,34,56,15,2.9,74.8,7.1,9.5,1.6,6.8,0.8,not fire
165
+ 12,7,2012,36,44,13,0,90.1,12.6,19.4,8.3,12.5,9.6,fire
166
+ 13,7,2012,39,45,13,0.6,85.2,11.3,10.4,4.2,10.9,4.7,fire
167
+ 14,7,2012,37,37,18,0.2,88.9,12.9,14.69,12.5,10.4,,fire
168
+ 15,7,2012,34,45,17,0,90.5,18,24.1,10.9,17.7,14.1,fire
169
+ 16,7,2012,31,83,17,0,84.5,19.4,33.1,4.7,19.2,7.3,fire
170
+ 17,7,2012,32,81,17,0,84.6,21.1,42.3,4.7,20.9,7.7,fire
171
+ 18,7,2012,33,68,15,0,86.1,23.9,51.6,5.2,23.9,9.1,fire
172
+ 19,7,2012,34,58,16,0,88.1,27.8,61.1,7.3,27.7,13,fire
173
+ 20,7,2012,36,50,16,0,89.9,32.7,71,9.5,32.6,17.3,fire
174
+ 21,7,2012,36,29,18,0,93.9,39.6,80.6,18.5,39.5,30,fire
175
+ 22,7,2012,32,48,18,0,91.5,44.2,90.1,13.2,44,25.4,fire
176
+ 23,7,2012,31,71,17,0,87.3,46.6,99,6.9,46.5,16.3,fire
177
+ 24,7,2012,33,63,17,1.1,72.8,20.9,56.6,1.6,21.7,2.5,not fire
178
+ 25,7,2012,39,64,9,1.2,73.8,11.7,15.9,1.1,11.4,0.7,not fire
179
+ 26,7,2012,35,58,10,0.2,78.3,10.8,19.7,1.6,10.7,1,not fire
180
+ 27,7,2012,29,87,18,0,80,11.8,28.3,2.8,11.8,3.2,not fire
181
+ 28,7,2012,33,57,16,0,87.5,15.7,37.6,6.7,15.7,9,fire
182
+ 29,7,2012,34,59,16,0,88.1,19.5,47.2,7.4,19.5,10.9,fire
183
+ 30,7,2012,36,56,16,0,88.9,23.8,57.1,8.2,23.8,13.2,fire
184
+ 31,7,2012,37,55,15,0,89.3,28.3,67.2,8.3,28.3,14.5,fire
185
+ 1,8,2012,38,52,14,0,78.3,4.4,10.5,2,4.4,0.8,not fire
186
+ 2,8,2012,40,34,14,0,93.3,10.8,21.4,13.8,10.6,13.5,fire
187
+ 3,8,2012,39,33,17,0,93.7,17.1,32.1,17.2,16.9,19.5,fire
188
+ 4,8,2012,38,35,15,0,93.8,23,42.7,15.7,22.9,20.9,fire
189
+ 5,8,2012,34,42,17,0.1,88.3,23.6,52.5,19,23.5,12.6,fire
190
+ 6,8,2012,30,54,14,3.1,70.5,11,9.1,1.3,10.5,0.8,not fire
191
+ 7,8,2012,34,63,13,2.9,69.7,7.2,9.8,1.2,6.9,0.6,not fire
192
+ 8,8,2012,37,56,11,0,87.4,11.2,20.2,5.2,11,5.9,fire
193
+ 9,8,2012,39,43,12,0,91.7,16.5,30.9,9.6,16.4,12.7,fire
194
+ 10,8,2012,39,39,15,0.2,89.3,15.8,35.4,8.2,15.8,10.7,fire
195
+ 11,8,2012,40,31,15,0,94.2,22.5,46.3,16.6,22.4,21.6,fire
196
+ 12,8,2012,39,21,17,0.4,93,18.4,41.5,15.5,18.4,18.8,fire
197
+ 13,8,2012,35,34,16,0.2,88.3,16.9,45.1,7.5,17.5,10.5,fire
198
+ 14,8,2012,37,40,13,0,91.9,22.3,55.5,10.8,22.3,15.7,fire
199
+ 15,8,2012,35,46,13,0.3,83.9,16.9,54.2,3.5,19,5.5,fire
200
+ 16,8,2012,40,41,10,0.1,92,22.6,65.1,9.5,24.2,14.8,fire
201
+ 17,8,2012,42,24,9,0,96,30.3,76.4,15.7,30.4,24,fire
202
+ 18,8,2012,37,37,14,0,94.3,35.9,86.8,16,35.9,26.3,fire
203
+ 19,8,2012,35,66,15,0.1,82.7,32.7,96.8,3.3,35.5,7.7,fire
204
+ 20,8,2012,36,81,15,0,83.7,34.4,107,3.8,38.1,9,fire
205
+ 21,8,2012,36,71,15,0,86,36.9,117.1,5.1,41.3,12.2,fire
206
+ 22,8,2012,37,53,14,0,89.5,41.1,127.5,8,45.5,18.1,fire
207
+ 23,8,2012,36,43,16,0,91.2,46.1,137.7,11.5,50.2,24.5,fire
208
+ 24,8,2012,35,38,15,0,92.1,51.3,147.7,12.2,54.9,26.9,fire
209
+ 25,8,2012,34,40,18,0,92.1,56.3,157.5,14.3,59.5,31.1,fire
210
+ 26,8,2012,33,37,16,0,92.2,61.3,167.2,13.1,64,30.3,fire
211
+ 27,8,2012,36,54,14,0,91,65.9,177.3,10,68,26.1,fire
212
+ 28,8,2012,35,56,14,0.4,79.2,37,166,2.1,30.6,6.1,not fire
213
+ 29,8,2012,35,53,17,0.5,80.2,20.7,149.2,2.7,30.6,5.9,fire
214
+ 30,8,2012,34,49,15,0,89.2,24.8,159.1,8.1,35.7,16,fire
215
+ 31,8,2012,30,59,19,0,89.1,27.8,168.2,9.8,39.3,19.4,fire
216
+ 1,9,2012,29,86,16,0,37.9,0.9,8.2,0.1,1.4,0,not fire
217
+ 2,9,2012,28,67,19,0,75.4,2.9,16.3,2,4,0.8,not fire
218
+ 3,9,2012,28,75,16,0,82.2,4.4,24.3,3.3,6,2.5,fire
219
+ 4,9,2012,30,66,15,0.2,73.5,4.1,26.6,1.5,6,0.7,not fire
220
+ 5,9,2012,30,58,12,4.1,66.1,4,8.4,1,3.9,0.4,not fire
221
+ 6,9,2012,34,71,14,6.5,64.5,3.3,9.1,1,3.5,0.4,not fire
222
+ 7,9,2012,31,62,15,0,83.3,5.8,17.7,3.8,6.4,3.2,fire
223
+ 8,9,2012,30,88,14,0,82.5,6.6,26.1,3,8.1,2.7,fire
224
+ 9,9,2012,30,80,15,0,83.1,7.9,34.5,3.5,10,3.7,fire
225
+ 10,9,2012,29,74,15,1.1,59.5,4.7,8.2,0.8,4.6,0.3,not fire
226
+ 11,9,2012,30,73,14,0,79.2,6.5,16.6,2.1,6.6,1.2,not fire
227
+ 12,9,2012,31,72,14,0,84.2,8.3,25.2,3.8,9.1,3.9,fire
228
+ 13,9,2012,29,49,19,0,88.6,11.5,33.4,9.1,12.4,10.3,fire
229
+ 14,9,2012,28,81,15,0,84.6,12.6,41.5,4.3,14.3,5.7,fire
230
+ 15,9,2012,32,51,13,0,88.7,16,50.2,6.9,17.8,9.8,fire
231
+ 16,9,2012,33,26,13,0,93.9,21.2,59.2,14.2,22.4,19.3,fire
232
+ 17,9,2012,34,44,12,0,92.5,25.2,63.3,11.2,26.2,17.5,fire
233
+ 18,9,2012,36,33,13,0.1,90.6,25.8,77.8,9,28.2,15.4,fire
234
+ 19,9,2012,29,41,8,0.1,83.9,24.9,86,2.7,28.9,5.6,fire
235
+ 20,9,2012,34,58,13,0.2,79.5,18.7,88,2.1,24.4,3.8,not fire
236
+ 21,9,2012,35,34,17,0,92.2,23.6,97.3,13.8,29.4,21.6,fire
237
+ 22,9,2012,33,64,13,0,88.9,26.1,106.3,7.1,32.4,13.7,fire
238
+ 23,9,2012,35,56,14,0,89,29.4,115.6,7.5,36,15.2,fire
239
+ 24,9,2012,26,49,6,2,61.3,11.9,28.1,0.6,11.9,0.4,not fire
240
+ 25,9,2012,28,70,15,0,79.9,13.8,36.1,2.4,14.1,3,not fire
241
+ 26,9,2012,30,65,14,0,85.4,16,44.5,4.5,16.9,6.5,fire
242
+ 27,9,2012,28,87,15,4.4,41.1,6.5,8,0.1,6.2,0,not fire
243
+ 28,9,2012,27,87,29,0.5,45.9,3.5,7.9,0.4,3.4,0.2,not fire
244
+ 29,9,2012,24,54,18,0.1,79.7,4.3,15.2,1.7,5.1,0.7,not fire
245
+ 30,9,2012,24,64,15,0.2,67.3,3.8,16.5,1.2,4.8,0.5,not fire
Drop_Columns.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ ["month", "Ws"]
app.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import eda # python file
3
+ import prediction # python file
4
+
5
+ navigation = st.sidebar.selectbox('Page Navigation: ',('EDA','Predict Forest Fire'))
6
+
7
+ if navigation == 'EDA':
8
+ eda.run()
9
+ else:
10
+ prediction.run()
11
+
eda.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+ import seaborn as sns
5
+ import matplotlib.pyplot as plt
6
+ import plotly.express as px
7
+ import sklearn
8
+ from sklearn.preprocessing import LabelEncoder
9
+
10
+ from PIL import Image
11
+
12
+ st.set_page_config(
13
+ page_title='Predicting Forest Fire in Algeria Using Supervised Learning',
14
+ layout = 'wide',
15
+ initial_sidebar_state='expanded'
16
+ )
17
+
18
+ def run():
19
+ # title
20
+ st.title('Predicting Forest Fire in Algeria Using Supervised Learning')
21
+
22
+ # sub header
23
+ st.subheader ('Exploratory Data Analysis of the dataset.')
24
+
25
+ # Add Image
26
+ image = Image.open('forest fire.jpg')
27
+ st.image(image,caption = 'Forest fire illustration')
28
+
29
+ # Description
30
+ st.write('Forest fires are a serious issue in Algeria, particularly during the summer months when hot, dry weather and strong winds increase the risk of fires spreading rapidly. The country has a significant amount of forested land, particularly in the northern coastal region, which is particularly vulnerable to fires. Predicting forest fires in Algeria is important in order to prevent or mitigate their impact.')
31
+ st.write('# Dataset')
32
+ st.write('This section explains the process of data loading. Dataset used in this analysis is Algerian Forest Fires Dataset on UCI Machine Learning Repository.')
33
+
34
+ # show dataframe
35
+ df = pd.read_csv('Algerian_forest_fires_dataset_UPDATE.csv')
36
+ st.dataframe(df)
37
+ # add description of Dataset
38
+ st.write('Following are the variables and definitions of each column in the dataset.')
39
+ st.write("`Temp` : temperature noon (temperature max) in Celsius degrees: 22 to 42")
40
+ st.write("`RH` : Relative Humidity in %: 21 to 90")
41
+ st.write("`RH` : Relative Humidity in %: 21 to 90")
42
+ st.write("`Ws` : Wind speed in km/h: 6 to 29")
43
+ st.write("`Rain` : total day in mm: 0 to 16.8")
44
+ st.write("`FFMC` : Fine Fuel Moisture Code (FFMC) index from the FWI system: 28.6 to 92.5")
45
+ st.write("`DMC` : Duff Moisture Code (DMC) index from the FWI system: 1.1 to 65.9")
46
+ st.write("`DC` : Drought Code (DC) index from the FWI system: 7 to 220.4")
47
+ st.write("`ISI` : Initial Spread Index (ISI) index from the FWI system: 0 to 18.5")
48
+ st.write("`BUI` : Buildup Index (BUI) index from the FWI system: 1.1 to 68")
49
+ st.write("`FWI` : Fire Weather Index (FWI) Index: 0 to 31.1")
50
+ st.write("`Classes` : two classes, namely fire and not fire")
51
+
52
+ # Forest Fire
53
+
54
+ st.write('# Exploratory Data Analysis ')
55
+ st.write('## Forest Fire')
56
+ st.write('This section describes data exploration to determine the number of forest fires that ocurred in 2012 in Algeria.')
57
+ # number of forest fire
58
+ df_eda = df.copy()
59
+ fire = df_eda.Classes.value_counts().to_frame().reset_index()
60
+
61
+ # Plot PieChart with Plotly
62
+ fig = px.pie(fire,values='Classes', names='index',color_discrete_sequence=['brown','orange'])
63
+ fig.update_layout(title_text = "Number of Forest Fire", title_x = 0.5)
64
+ fig.show()
65
+ st.plotly_chart(fig)
66
+ st.write('From the visualization above, the number of forest fires that occurred is balanced with the number of forest fires that did not occur. After knowing the number of forest fires, further exploration is carried out to find out when forest fires occur most frequently.')
67
+
68
+ # The month with the most occurrence of forest fires
69
+
70
+ st.write('### The month with the most occurrence of forest fires')
71
+ st.write('This section describes data exploration for finding the `month` in which forest fires occur most frequently.')
72
+ # create bar chart
73
+ sns.set(font_scale=1)
74
+ fig, ax = plt.subplots(figsize=(20, 8))
75
+
76
+ sns.countplot(x=df_eda.month, hue=df_eda.Classes,palette='YlOrBr')
77
+
78
+ plt.title('Number of forest fires by month')
79
+ plt.xlabel('Month')
80
+ plt.ylabel('Forest Fire Count')
81
+ plt.show()
82
+ st.pyplot(fig)
83
+ st.write('From this dataset it is known that forest fires most often occur in the summer, to be precise in **August**. **August** has the highest average temperature compared to other months, the lowest average relative humidity compared to other months and the lowest average rain intensity compared to other months.')
84
+
85
+
86
+ # Temperature
87
+
88
+ st.write('## Temperature')
89
+ st.write('This section describes data exploration to find the `Temperature` when a forest fire occurs.')
90
+ # create bar chart
91
+ sns.set(font_scale=1)
92
+ fig, ax = plt.subplots(figsize=(20, 8))
93
+
94
+ sns.countplot(x=df_eda.Temperature, hue=df_eda.Classes,palette='YlOrBr')
95
+
96
+ plt.title('Temperature and Forest fires')
97
+ plt.xlabel('Temperature')
98
+ plt.ylabel('Count')
99
+ plt.show()
100
+ st.pyplot(fig)
101
+ st.write('From the visualization above, the average temperature when a forest fire occurs is 33.82 degree Celsius.')
102
+
103
+ # Relative Humidity
104
+
105
+ st.write('## Relative Humidity')
106
+ st.write('This section describes data exploration to find the level of `relative humidity` when a forest fire occurs.')
107
+ # create a new column based on humidity group
108
+ df_eda['RH_bins']=pd.cut(
109
+ x=df_eda['RH'],
110
+ bins=[21,26,31,36,41,46,51,56,61,66,71,76,81,86,91],
111
+ labels=['21-25','26-30','31-35','36-40','41-45','46-50','51-55','56-60','61-65','66-70','71-75','76-80','81-85','86-90'])
112
+
113
+ # create bar chart
114
+ sns.set(font_scale=1.5)
115
+ fig, ax = plt.subplots(figsize=(20, 8))
116
+
117
+ sns.countplot(x=df_eda.RH_bins, hue=df_eda.Classes,palette='YlOrBr')
118
+
119
+ plt.title('Relative Humidity and Forest Fires')
120
+ plt.xlabel('Relative Humidity')
121
+ plt.ylabel('Count')
122
+ plt.show()
123
+ st.pyplot(fig)
124
+ st.write('From the visualization above, forest fires most often occur when the relative humidity is 55%. The more the relative humidity increases, the more likely it is that a forest fire will not occur.')
125
+
126
+ # Rain
127
+
128
+ st.write('## Rain')
129
+ st.write('This section describes data exploration to find the intensity of `rain` when a forest fire occurs.')
130
+ # forest fire when raining
131
+ rain = df_eda[df_eda['Classes']=='fire'].Rain.value_counts().reset_index()
132
+ rain = rain.rename(columns={'index':'rain_intensity'})
133
+ # create bar chart
134
+ sns.set(font_scale=1.5)
135
+ fig, ax = plt.subplots(figsize=(20, 8))
136
+
137
+ sns.countplot(x=df_eda[df_eda['Classes']=='fire'].Rain,palette='YlOrBr')
138
+
139
+ plt.title('Rain and Forest Fires')
140
+ plt.xlabel('Rain')
141
+ plt.ylabel('Forest Fire Count')
142
+ plt.show()
143
+ st.pyplot(fig)
144
+ st.write('From the visualization above, most forest fire incidents occur when it is not raining. But there are also forest fires that occur when it is raining with low intensity.')
145
+
146
+ # Fire Weather Index (FWI) System
147
+
148
+ st.write('## Fire Weather Index (FWI) System')
149
+ st.write('This section explains the process of data exploration to find the `FWI` value that can cause forest fire. The Fire Weather Index (FWI) is a numeric rating of fire intensity. It is based on the ISI and the BUI, and __is used as a general index of fire danger throughout the forested areas__.')
150
+ st.write('**Structure of the FWI System**')
151
+ st.write('The diagram below illustrates the components of the FWI System. Calculation of the components is based on consecutive daily observations of `temperature`, `relative humidity`,`wind speed` and `24-hour precipitation`. The six standard components provide numeric ratings of relative potential for wildland fire.')
152
+ # Add Image
153
+ fwi = Image.open('fwi.png')
154
+ st.image(fwi)
155
+ st.write("FWI Range")
156
+ st.write("`0 - 1` : Low ")
157
+ st.write("`2 - 6` : Moderate")
158
+ st.write("`7 - 13` : High")
159
+ st.write("`> 13` : Very High")
160
+ # FWI
161
+ df_eda['FWI_cat']=pd.cut(
162
+ x=df_eda['FWI'],
163
+ bins=[-1,1,6,13,np.inf],
164
+ labels=['Low','Moderate','High','Very High'])
165
+
166
+ # create bar chart
167
+ sns.set(font_scale=1.5)
168
+ fig, ax = plt.subplots(figsize=(20, 8))
169
+
170
+ sns.countplot(x=df_eda.FWI_cat,hue=df_eda.Classes,palette='YlOrBr')
171
+
172
+ plt.title('FWI and Forest Fires')
173
+ plt.xlabel('FWI')
174
+ plt.ylabel('Count')
175
+ plt.show()
176
+
177
+ st.pyplot(fig)
178
+ st.write('From the visualization above, the potential for forest fires increases when the FWI value is in the range of 2-6 (moderate).')
179
+
180
+ # Correlation Matrix Analysis
181
+
182
+ st.write('## Correlation Matrix Analysis')
183
+ st.write('This section explains about correlation matrix analysis to find out the correlation between features and target (`Classes`). The cell below explains the process of performing a correlation matrix analysis to identify the features that are most strongly correlated with the target (`Classes`). To accomplish this, categorical data will be converted into numerical data using the `LabelEncoder` library.')
184
+ df_copy = df.copy()
185
+
186
+ # Using LabelEncoder to convert categorical into numerical data
187
+ m_LabelEncoder = LabelEncoder()
188
+ df_copy['Classes']=m_LabelEncoder.fit_transform(df_copy['Classes'])
189
+ df_copy = df_copy.drop(['year'],axis=1)
190
+ # Plotting Correlation Matrix
191
+ sns.set(font_scale=1)
192
+ fig = plt.figure(figsize=(15,15))
193
+ sns.heatmap(df_copy.corr(),annot=True,cmap='coolwarm', fmt='.2f')
194
+ st.pyplot(fig)
195
+ st.write('From the visualization above, `month` and `Ws` has a low correlation to the target (`Classes`).')
196
+
197
+ if __name__ == '__main__':
198
+ run()
forest fire.jpg ADDED
fwi.png ADDED
prediction.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import pickle
5
+ import json
6
+ # Load All Files
7
+
8
+ with open('prepmod_dt.pkl', 'rb') as file_1:
9
+ prepmod_dt = pickle.load(file_1)
10
+
11
+ with open('Drop_Columns.txt', 'r') as file_2:
12
+ Drop_Columns = json.load(file_2)
13
+
14
+ def run():
15
+ with st.form(key='form_forest_fire'):
16
+ day = st.slider('Enter Date',min_value=1,max_value=31,value=26)
17
+ month = st.slider('Enter Month',min_value=1, max_value=12,value=7)
18
+ year = st.number_input('Enter Year',min_value=2012,max_value=2012,value=2012)
19
+ Temperature = st.number_input('Enter Temperature',min_value=22,max_value=42,value=36)
20
+ RH = st.number_input('Enter RH (Relative Humidity) in %',min_value=21,max_value=90,value=53)
21
+ Ws = st.number_input('Enter Wind speed in km/h',min_value=6,max_value=29,value=19)
22
+ Rain = st.number_input('Enter Rainfall in mm',step=0.01,format="%.2f",min_value=0.00,max_value=16.80,value=0.00)
23
+ FFMC = st.number_input('Fine Fuel Moisture Code (FFMC) index',step=0.1,format="%.2f",min_value=28.60,max_value=92.50,value=89.20)
24
+ DMC = st.number_input('Duff Moisture Code (DMC) index',step=0.1,format="%.2f",min_value=1.10,max_value=65.90,value=17.10)
25
+ DC = st.number_input('Drought Code (DC) index',step=0.1,format="%.2f",min_value=7.00,max_value=220.40,value=98.60)
26
+ ISI = st.number_input('Initial Spread Index (ISI) index',step=0.1,format="%.2f",min_value=0.00,max_value=18.50,value=10.00)
27
+ BUI = st.number_input('Buildup Index (BUI) index',step=0.1,format="%.2f",min_value=1.10,max_value=68.00,value=23.90)
28
+ FWI = st.number_input('Fire Weather Index (FWI) Index',step=0.1,format="%.2f",min_value=0.00,max_value=31.10,value=15.30)
29
+
30
+
31
+
32
+ submitted = st.form_submit_button('Is there a forest fire?')
33
+
34
+ df_inf = {
35
+ 'day': day,
36
+ 'month': month,
37
+ 'year': year,
38
+ 'Temperature': Temperature,
39
+ 'RH': RH,
40
+ 'Ws': Ws,
41
+ 'Rain': Rain,
42
+ 'FFMC': FFMC,
43
+ 'DMC': DMC,
44
+ 'DC': DC,
45
+ 'ISI': ISI,
46
+ 'BUI':BUI,
47
+ 'FWI':FWI
48
+ }
49
+ df_inf = pd.DataFrame([df_inf])
50
+ # Data Inference
51
+ df_inf_copy = df_inf.copy()
52
+
53
+
54
+ # Removing unnecessary features
55
+ df_inf_final = df_inf_copy.drop(Drop_Columns,axis=1).sort_index()
56
+
57
+ st.dataframe(df_inf_final)
58
+
59
+ if submitted:
60
+ # Predict using DecisionTree
61
+ y_pred_inf = prepmod_dt.predict(df_inf_final)
62
+ st.write('# Is there a forest fire?')
63
+ if y_pred_inf == 0:
64
+ st.subheader('There is No Forest Fire')
65
+ else:
66
+ st.subheader('There is a Forest Fire')
67
+
68
+ if __name__ == '__main__':
69
+ run()
prepmod_dt.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d3d4dbddeebf9727a2e31d0e6450d97b96a54b015cea66f2de6eb0dcc02cd1a
3
+ size 3734
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ treamlit
2
+ pandas
3
+ seaborn
4
+ matplotlib
5
+ numpy
6
+ scikit-learn==1.2.1
7
+ imbalanced-learn==0.10.1
8
+ plotly