Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import json | |
# Load All Files | |
with open('prepmod_dt.pkl', 'rb') as file_1: | |
prepmod_dt = pickle.load(file_1) | |
with open('Drop_Columns.txt', 'r') as file_2: | |
Drop_Columns = json.load(file_2) | |
def run(): | |
with st.form(key='form_forest_fire'): | |
day = st.slider('Enter Date',min_value=1,max_value=31,value=26) | |
month = st.slider('Enter Month',min_value=1, max_value=12,value=7) | |
year = st.number_input('Enter Year',min_value=2012,max_value=2012,value=2012) | |
st.markdown('---') | |
Temperature = st.number_input('Enter Temperature',min_value=22,max_value=42,value=36) | |
RH = st.number_input('Enter RH (Relative Humidity) in %',min_value=21,max_value=90,value=53) | |
Ws = st.number_input('Enter Wind speed in km/h',min_value=6,max_value=29,value=19) | |
Rain = st.number_input('Enter Rainfall in mm',step=0.01,format="%.2f",min_value=0.00,max_value=16.80,value=0.00) | |
st.markdown('---') | |
FFMC = st.number_input('Fine Fuel Moisture Code (FFMC) index',step=0.1,format="%.2f",min_value=28.60,max_value=92.50,value=89.20) | |
DMC = st.number_input('Duff Moisture Code (DMC) index',step=0.1,format="%.2f",min_value=1.10,max_value=65.90,value=17.10) | |
DC = st.number_input('Drought Code (DC) index',step=0.1,format="%.2f",min_value=7.00,max_value=220.40,value=98.60) | |
ISI = st.number_input('Initial Spread Index (ISI) index',step=0.1,format="%.2f",min_value=0.00,max_value=18.50,value=10.00) | |
BUI = st.number_input('Buildup Index (BUI) index',step=0.1,format="%.2f",min_value=1.10,max_value=68.00,value=23.90) | |
FWI = st.number_input('Fire Weather Index (FWI) Index',step=0.1,format="%.2f",min_value=0.00,max_value=31.10,value=15.30) | |
submitted = st.form_submit_button('Is there a forest fire?') | |
df_inf = { | |
'day': day, | |
'month': month, | |
'year': year, | |
'Temperature': Temperature, | |
'RH': RH, | |
'Ws': Ws, | |
'Rain': Rain, | |
'FFMC': FFMC, | |
'DMC': DMC, | |
'DC': DC, | |
'ISI': ISI, | |
'BUI':BUI, | |
'FWI':FWI | |
} | |
df_inf = pd.DataFrame([df_inf]) | |
# Data Inference | |
df_inf_copy = df_inf.copy() | |
# Removing unnecessary features | |
df_inf_final = df_inf_copy.drop(Drop_Columns,axis=1).sort_index() | |
st.dataframe(df_inf_final) | |
if submitted: | |
# Predict using DecisionTree | |
y_pred_inf = prepmod_dt.predict(df_inf_final) | |
st.write('# Is there a forest fire?') | |
if y_pred_inf == 0: | |
st.subheader('There is No Forest Fire') | |
else: | |
st.subheader('There is a Forest Fire') | |
if __name__ == '__main__': | |
run() |