Spaces:
Sleeping
Sleeping
Updated interface
Browse files
app.py
CHANGED
@@ -109,8 +109,6 @@ def calculate_dice_coefficient(image1, image2):
|
|
109 |
false_negatives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat != 255))
|
110 |
dice_coefficient = (2 * true_positives) / (2 * true_positives + false_positives + false_negatives)
|
111 |
return dice_coefficient
|
112 |
-
|
113 |
-
|
114 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
115 |
st.set_page_config(layout='wide')
|
116 |
ds = load_dataset('ahishamm/combined_masks',split='train')
|
@@ -132,34 +130,22 @@ img = image_select(
|
|
132 |
captions=["sample 1","sample 2","sample 3","sample 4"],
|
133 |
return_value='index'
|
134 |
)
|
135 |
-
#testing with an uploaded image
|
136 |
processor = AutoProcessor.from_pretrained('ahishamm/skinsam')
|
137 |
model = AutoModelForMaskGeneration.from_pretrained('ahishamm/skinsam_focalloss_base_combined')
|
138 |
model.to(device)
|
139 |
-
#uploaded_file = st.file_uploader("Choose a file",type=['jpg','jpeg','png'])
|
140 |
-
#p = get_bounding_box(np.array(ds[img]['label']))
|
141 |
p = get_bounding_box(np.array(label_arr[img]))
|
142 |
-
#predicted_mask_array = get_output(ds[img]['image'],p)
|
143 |
predicted_mask_array = get_output(image_arr[img],p)
|
144 |
-
#predicted_mask = generate_image(predicted_mask_array)
|
145 |
predicted_mask = generate_image(predicted_mask_array)
|
146 |
-
#result_image = show_mask(ds[img]['image'],predicted_mask_array)
|
147 |
result_image = show_mask(image_arr[img],predicted_mask_array)
|
148 |
with st.container():
|
149 |
tab1, tab2 = st.tabs(['Visualizations','Metrics'])
|
150 |
with tab1:
|
151 |
-
col1, col2
|
152 |
with col1:
|
153 |
-
#st.image(ds[img]['image'],caption='Original Skin Lesion Image',use_column_width=True)
|
154 |
st.image(image_arr[img],caption='Original Skin Lesion Image',use_column_width=True)
|
155 |
-
with col2:
|
156 |
-
st.image(predicted_mask,caption='Predicted Mask',use_column_width=True)
|
157 |
-
with col3:
|
158 |
st.image(result_image,caption='Mask Overlay',use_column_width=True)
|
159 |
with tab2:
|
160 |
-
#st.write(f'The IOU Score: {iou_calculation(ds[img]["label"],predicted_mask)}')
|
161 |
-
#st.write(f'The Pixel Accuracy: {calculate_pixel_accuracy(ds[img]["label"],predicted_mask)}')
|
162 |
-
#st.write(f'The Dice Coefficient Score: {calculate_dice_coefficient(ds[img]["label"],predicted_mask)}')
|
163 |
st.write(f'The IOU Score: {iou_calculation(label_arr[img],predicted_mask)}')
|
164 |
st.write(f'The Pixel Accuracy: {calculate_pixel_accuracy(label_arr[img],predicted_mask)}')
|
165 |
st.write(f'The Dice Coefficient Score: {calculate_dice_coefficient(label_arr[img],predicted_mask)}')
|
|
|
109 |
false_negatives = np.sum(np.logical_and(np_image1_flat == 255, np_image2_flat != 255))
|
110 |
dice_coefficient = (2 * true_positives) / (2 * true_positives + false_positives + false_negatives)
|
111 |
return dice_coefficient
|
|
|
|
|
112 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
113 |
st.set_page_config(layout='wide')
|
114 |
ds = load_dataset('ahishamm/combined_masks',split='train')
|
|
|
130 |
captions=["sample 1","sample 2","sample 3","sample 4"],
|
131 |
return_value='index'
|
132 |
)
|
|
|
133 |
processor = AutoProcessor.from_pretrained('ahishamm/skinsam')
|
134 |
model = AutoModelForMaskGeneration.from_pretrained('ahishamm/skinsam_focalloss_base_combined')
|
135 |
model.to(device)
|
|
|
|
|
136 |
p = get_bounding_box(np.array(label_arr[img]))
|
|
|
137 |
predicted_mask_array = get_output(image_arr[img],p)
|
|
|
138 |
predicted_mask = generate_image(predicted_mask_array)
|
|
|
139 |
result_image = show_mask(image_arr[img],predicted_mask_array)
|
140 |
with st.container():
|
141 |
tab1, tab2 = st.tabs(['Visualizations','Metrics'])
|
142 |
with tab1:
|
143 |
+
col1, col2 = st.columns(2)
|
144 |
with col1:
|
|
|
145 |
st.image(image_arr[img],caption='Original Skin Lesion Image',use_column_width=True)
|
146 |
+
with col2:
|
|
|
|
|
147 |
st.image(result_image,caption='Mask Overlay',use_column_width=True)
|
148 |
with tab2:
|
|
|
|
|
|
|
149 |
st.write(f'The IOU Score: {iou_calculation(label_arr[img],predicted_mask)}')
|
150 |
st.write(f'The Pixel Accuracy: {calculate_pixel_accuracy(label_arr[img],predicted_mask)}')
|
151 |
st.write(f'The Dice Coefficient Score: {calculate_dice_coefficient(label_arr[img],predicted_mask)}')
|