Spaces:
Sleeping
Sleeping
from langchain.chat_models import ChatOpenAI | |
from langchain.schema import HumanMessage, SystemMessage | |
from langchain_community.tools import DuckDuckGoSearchRun | |
from ai71 import AI71 | |
import gradio as gr | |
import openai | |
import os | |
import re | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
import numpy as np | |
import pytesseract | |
# Make sure to import the necessary OpenAI API client and configure it. | |
all_cals = {} | |
def extract_calories_and_items(text): | |
# Use regular expression to find all numerical values associated with "calory" or "calories" | |
pattern = r'(\d+)\s*(?:calory|calories)' | |
matches = re.findall(pattern, text, re.IGNORECASE) | |
# Convert the matches to integers | |
calories = [int(match) for match in matches] | |
return calories | |
def plot_calories(calories): | |
labels = sorted(calories, key=calories.get) | |
vals = [calories[label] for label in labels] | |
plt.barh(labels, vals, color='skyblue') | |
plt.xlabel('Calories') | |
plt.title('Item and Count') | |
plt.tight_layout() | |
def parse_items(items_string): | |
# Remove square brackets and split by comma | |
items_list = items_string.strip('[]').split(',') | |
item_dict = {} | |
# Define the pattern to match the quantity and item | |
pattern = r'(\d+)\s*x\s*(\w+)' | |
for item in items_list: | |
match = re.match(pattern, item.strip()) | |
if match: | |
quantity = int(match.group(1)) | |
item_name = match.group(2) | |
if item_name in item_dict: | |
item_dict[item_name] += quantity | |
else: | |
item_dict[item_name] = quantity | |
return item_dict | |
# Set the API key for AI71 | |
AI71_API_KEY = "key" | |
AI71_BASE_URL = "https://api.ai71.ai/v1/" | |
client = AI71(AI71_API_KEY) | |
search = DuckDuckGoSearchRun() | |
# usr_input = input(f"User:") | |
# | |
# print(items) | |
def chatGPT_food(userinput, temperature=0.1, max_tokens=300): | |
keyword = client.chat.completions.create( | |
model="tiiuae/falcon-180B-chat", | |
messages=[ | |
{"role": "system", "content": '''you need to extract the food item from the user text without any comments | |
example: | |
user: I ate two apples | |
assistant: 2 x apple'''}, | |
{"role": "user", "content": userinput} | |
], | |
# temperature=0.5, | |
) | |
items = parse_items(keyword.choices[0].message.content) | |
for item, count in items.items(): | |
result = search.invoke(f'calories of {item}') | |
response = client.chat.completions.create( | |
model="tiiuae/falcon-180B-chat", | |
messages=[ | |
{"role": "system", "content": '''based on the provided information extract the calories count per portion of the item provided, just the calories and portion in grams or ml without further comments | |
Example: | |
orange 47 calories per 100 gram | |
cola 38 calories per 100 gram | |
do not generate more or add any unneeded comments, just follow the examples strictly'''}, | |
{"role": "user", "content": result} | |
], | |
temperature=0.2, | |
) | |
# print("search") | |
# print(result) | |
# print("ai") | |
# print (response.choices[0].message.content) | |
calories = extract_calories_and_items(response.choices[0].message.content) | |
# print("calories") | |
# print(calories) | |
try: | |
all_cals[f"{count}x{item}"] = count*calories[0] | |
except: | |
continue | |
return all_cals | |
def chatGPT_invoice(userinput, temperature=0.1, max_tokens=300): | |
response = client.chat.completions.create( | |
model="tiiuae/falcon-180B-chat", | |
messages=[ | |
{"role": "system", "content": '''from the following invoice, find the name of the restaurant, then write a table for each food in the invoice and estimate its calories count only knowing that this food is from the same restaurant, with no further text or comments, or notes: | |
example: | |
"Restaurant: KFC | |
<insert the table of food and estimated calories>" | |
Do it for this text:'''}, | |
{"role": "user", "content": userinput} | |
], | |
temperature=temperature, | |
max_tokens=max_tokens | |
) | |
return response.choices[0].message.content | |
def update_plot(userinput): | |
# all_cals = chatGPT_food(userinput) | |
fig, ax = plt.subplots() | |
plot_calories(all_cals) | |
return fig | |
def ocr(input_img): | |
img1 = np.array(input_img) | |
text = pytesseract.image_to_string(img1) | |
output = chatGPT_invoice(text) | |
return output | |
with gr.Blocks() as demo: | |
with gr.Tab("Food Calories"): | |
food = gr.Textbox(label="Food") | |
output = gr.Textbox(label="Calories") | |
greet_btn = gr.Button("Get Calories") | |
greet_btn.click(fn=chatGPT_food, inputs=food, outputs=output) | |
with gr.Tab("Invoice OCR"): | |
image_input = gr.Image(height=200, width=200) | |
output_text = gr.Textbox(label="Estimated Calories from Invoice") | |
demo_ocr = gr.Interface(fn=ocr, inputs=image_input, outputs=output_text) | |
with gr.Tab("Calories Plot"): | |
# food_plot = gr.Textbox(label="Enter Food for Plot") | |
plot_output = gr.Plot(label="Calories Plot") | |
plot_btn = gr.Button("Generate Plot") | |
plot_btn.click(fn=update_plot, inputs=plot_btn, outputs=plot_output) | |
demo.launch() | |