Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,20 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
3 |
-
import os
|
4 |
import shutil
|
5 |
import re
|
6 |
|
7 |
-
#from huggingface_hub import snapshot_download
|
8 |
import numpy as np
|
9 |
from scipy.io import wavfile
|
10 |
from scipy.io.wavfile import write, read
|
11 |
from pydub import AudioSegment
|
12 |
-
|
13 |
file_upload_available = os.environ.get("ALLOW_FILE_UPLOAD")
|
14 |
MAX_NUMBER_SENTENCES = 10
|
15 |
|
16 |
-
import json
|
17 |
with open("characters.json", "r") as file:
|
18 |
data = json.load(file)
|
19 |
characters = [
|
@@ -24,44 +25,47 @@ with open("characters.json", "r") as file:
|
|
24 |
}
|
25 |
for item in data
|
26 |
]
|
27 |
-
|
28 |
-
from TTS.api import TTS
|
29 |
tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True)
|
30 |
|
|
|
31 |
def cut_wav(input_path, max_duration):
|
32 |
# Load the WAV file
|
33 |
audio = AudioSegment.from_wav(input_path)
|
34 |
-
|
35 |
# Calculate the duration of the audio
|
36 |
audio_duration = len(audio) / 1000 # Convert milliseconds to seconds
|
37 |
-
|
38 |
# Determine the duration to cut (maximum of max_duration and actual audio duration)
|
39 |
cut_duration = min(max_duration, audio_duration)
|
40 |
-
|
41 |
# Cut the audio
|
42 |
-
|
43 |
-
|
|
|
44 |
# Get the input file name without extension
|
45 |
file_name = os.path.splitext(os.path.basename(input_path))[0]
|
46 |
-
|
47 |
# Construct the output file path with the original file name and "_cut" suffix
|
48 |
output_path = f"{file_name}_cut.wav"
|
49 |
-
|
50 |
# Save the cut audio as a new WAV file
|
51 |
cut_audio.export(output_path, format="wav")
|
52 |
|
53 |
return output_path
|
54 |
|
|
|
55 |
def load_hidden(audio_in):
|
56 |
return audio_in
|
57 |
|
|
|
58 |
def load_hidden_mic(audio_in):
|
59 |
print("USER RECORDED A NEW SAMPLE")
|
60 |
-
|
61 |
-
library_path = 'bark_voices'
|
62 |
-
folder_name = 'audio-0-100'
|
63 |
-
second_folder_name = 'audio-0-100_cleaned'
|
64 |
-
|
65 |
folder_path = os.path.join(library_path, folder_name)
|
66 |
second_folder_path = os.path.join(library_path, second_folder_name)
|
67 |
|
@@ -69,35 +73,42 @@ def load_hidden_mic(audio_in):
|
|
69 |
if os.path.exists(folder_path):
|
70 |
try:
|
71 |
shutil.rmtree(folder_path)
|
72 |
-
print(
|
|
|
73 |
except OSError as e:
|
74 |
print(f"Error: {folder_path} - {e.strerror}")
|
75 |
else:
|
76 |
-
print(
|
|
|
77 |
|
78 |
if os.path.exists(second_folder_path):
|
79 |
try:
|
80 |
shutil.rmtree(second_folder_path)
|
81 |
-
print(
|
|
|
82 |
except OSError as e:
|
83 |
print(f"Error: {second_folder_path} - {e.strerror}")
|
84 |
else:
|
85 |
-
print(
|
86 |
-
|
|
|
87 |
return audio_in
|
88 |
|
|
|
89 |
def clear_clean_ckeck():
|
90 |
return False
|
91 |
|
|
|
92 |
def wipe_npz_file(folder_path):
|
93 |
print("YO β’ a user is manipulating audio inputs")
|
94 |
-
|
|
|
95 |
def split_process(audio, chosen_out_track):
|
96 |
gr.Info("Cleaning your audio sample...")
|
97 |
os.makedirs("out", exist_ok=True)
|
98 |
write('test.wav', audio[0], audio[1])
|
99 |
os.system("python3 -m demucs.separate -n mdx_extra_q -j 4 test.wav -o out")
|
100 |
-
#return "./out/mdx_extra_q/test/vocals.wav","./out/mdx_extra_q/test/bass.wav","./out/mdx_extra_q/test/drums.wav","./out/mdx_extra_q/test/other.wav"
|
101 |
if chosen_out_track == "vocals":
|
102 |
print("Audio sample cleaned")
|
103 |
return "./out/mdx_extra_q/test/vocals.wav"
|
@@ -109,7 +120,8 @@ def split_process(audio, chosen_out_track):
|
|
109 |
return "./out/mdx_extra_q/test/other.wav"
|
110 |
elif chosen_out_track == "all-in":
|
111 |
return "test.wav"
|
112 |
-
|
|
|
113 |
def update_selection(selected_state: gr.SelectData):
|
114 |
c_image = characters[selected_state.index]["image"]
|
115 |
c_title = characters[selected_state.index]["title"]
|
@@ -117,7 +129,7 @@ def update_selection(selected_state: gr.SelectData):
|
|
117 |
|
118 |
return c_title, selected_state
|
119 |
|
120 |
-
|
121 |
def infer(prompt, input_wav_file, clean_audio, hidden_numpy_audio):
|
122 |
print("""
|
123 |
βββββ
|
@@ -126,8 +138,8 @@ NEW INFERENCE:
|
|
126 |
""")
|
127 |
if prompt == "":
|
128 |
gr.Warning("Do not forget to provide a tts prompt !")
|
129 |
-
|
130 |
-
if clean_audio is True
|
131 |
print("We want to clean audio sample")
|
132 |
# Extract the file name without the extension
|
133 |
new_name = os.path.splitext(os.path.basename(input_wav_file))[0]
|
@@ -139,12 +151,13 @@ NEW INFERENCE:
|
|
139 |
else:
|
140 |
print("This file is new, we need to clean and store it")
|
141 |
source_path = split_process(hidden_numpy_audio, "vocals")
|
142 |
-
|
143 |
# Rename the file
|
144 |
-
new_path = os.path.join(os.path.dirname(
|
|
|
145 |
os.rename(source_path, new_path)
|
146 |
source_path = new_path
|
147 |
-
else
|
148 |
print("We do NOT want to clean audio sample")
|
149 |
# Path to your WAV file
|
150 |
source_path = input_wav_file
|
@@ -162,10 +175,11 @@ NEW INFERENCE:
|
|
162 |
os.makedirs(destination_path, exist_ok=True)
|
163 |
|
164 |
# Move the WAV file to the new directory
|
165 |
-
shutil.move(source_path, os.path.join(
|
|
|
166 |
|
167 |
# βββββ
|
168 |
-
|
169 |
# Split the text into sentences based on common punctuation marks
|
170 |
sentences = re.split(r'(?<=[.!?])\s+', prompt)
|
171 |
|
@@ -173,7 +187,7 @@ NEW INFERENCE:
|
|
173 |
gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)")
|
174 |
# Keep only the first MAX_NUMBER_SENTENCES sentences
|
175 |
first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
|
176 |
-
|
177 |
# Join the selected sentences back into a single string
|
178 |
limited_prompt = ' '.join(first_nb_sentences)
|
179 |
prompt = limited_prompt
|
@@ -183,22 +197,23 @@ NEW INFERENCE:
|
|
183 |
|
184 |
gr.Info("Generating audio from prompt")
|
185 |
tts.tts_to_file(text=prompt,
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
|
190 |
# List all the files and subdirectories in the given directory
|
191 |
contents = os.listdir(f"bark_voices/{file_name}")
|
192 |
|
193 |
# Print the contents
|
194 |
for item in contents:
|
195 |
-
print(item)
|
196 |
print("Preparing final waveform video ...")
|
197 |
tts_video = gr.make_waveform(audio="output.wav")
|
198 |
print(tts_video)
|
199 |
print("FINISHED")
|
200 |
return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True), gr.Group.update(visible=True), destination_path
|
201 |
|
|
|
202 |
def infer_from_c(prompt, c_name):
|
203 |
print("""
|
204 |
βββββ
|
@@ -208,16 +223,16 @@ NEW INFERENCE:
|
|
208 |
if prompt == "":
|
209 |
gr.Warning("Do not forget to provide a tts prompt !")
|
210 |
print("Warning about prompt sent to user")
|
211 |
-
|
212 |
print(f"USING VOICE LIBRARY: {c_name}")
|
213 |
# Split the text into sentences based on common punctuation marks
|
214 |
sentences = re.split(r'(?<=[.!?])\s+', prompt)
|
215 |
-
|
216 |
if len(sentences) > MAX_NUMBER_SENTENCES:
|
217 |
-
gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)")
|
218 |
# Keep only the first MAX_NUMBER_SENTENCES sentences
|
219 |
first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
|
220 |
-
|
221 |
# Join the selected sentences back into a single string
|
222 |
limited_prompt = ' '.join(first_nb_sentences)
|
223 |
prompt = limited_prompt
|
@@ -225,18 +240,17 @@ NEW INFERENCE:
|
|
225 |
else:
|
226 |
prompt = prompt
|
227 |
|
228 |
-
|
229 |
if c_name == "":
|
230 |
gr.Warning("Voice character is not properly selected. Please ensure that the name of the chosen voice is specified in the Character Name input.")
|
231 |
print("Warning about Voice Name sent to user")
|
232 |
else:
|
233 |
print(f"Generating audio from prompt with {c_name} ;)")
|
234 |
-
|
235 |
tts.tts_to_file(text=prompt,
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
print("Preparing final waveform video ...")
|
241 |
tts_video = gr.make_waveform(audio="output.wav")
|
242 |
print(tts_video)
|
@@ -285,38 +299,6 @@ span.record-icon > span.dot.svelte-1thnwz {
|
|
285 |
max-width: 15rem;
|
286 |
height: 36px;
|
287 |
}
|
288 |
-
div#share-btn-container > div {
|
289 |
-
flex-direction: row;
|
290 |
-
background: black;
|
291 |
-
align-items: center;
|
292 |
-
}
|
293 |
-
#share-btn-container:hover {
|
294 |
-
background-color: #060606;
|
295 |
-
}
|
296 |
-
#share-btn {
|
297 |
-
all: initial;
|
298 |
-
color: #ffffff;
|
299 |
-
font-weight: 600;
|
300 |
-
cursor:pointer;
|
301 |
-
font-family: 'IBM Plex Sans', sans-serif;
|
302 |
-
margin-left: 0.5rem !important;
|
303 |
-
padding-top: 0.5rem !important;
|
304 |
-
padding-bottom: 0.5rem !important;
|
305 |
-
right:0;
|
306 |
-
}
|
307 |
-
#share-btn * {
|
308 |
-
all: unset;
|
309 |
-
}
|
310 |
-
#share-btn-container div:nth-child(-n+2){
|
311 |
-
width: auto !important;
|
312 |
-
min-height: 0px !important;
|
313 |
-
}
|
314 |
-
#share-btn-container .wrap {
|
315 |
-
display: none !important;
|
316 |
-
}
|
317 |
-
#share-btn-container.hidden {
|
318 |
-
display: none!important;
|
319 |
-
}
|
320 |
img[src*='#center'] {
|
321 |
display: block;
|
322 |
margin: auto;
|
@@ -340,6 +322,7 @@ img[src*='#center'] {
|
|
340 |
.dark .footer>p {
|
341 |
background: #0b0f19;
|
342 |
}
|
|
|
343 |
.disclaimer {
|
344 |
text-align: left;
|
345 |
}
|
@@ -350,34 +333,48 @@ img[src*='#center'] {
|
|
350 |
|
351 |
with gr.Blocks(css=css) as demo:
|
352 |
with gr.Column(elem_id="col-container"):
|
353 |
-
|
354 |
-
gr.Markdown("""
|
355 |
-
<h1 style="text-align: center;">Voice Cloning Demo</h1>
|
356 |
-
""")
|
357 |
with gr.Row():
|
358 |
with gr.Column():
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
)
|
365 |
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
with gr.Tab("Microphone"):
|
378 |
-
texts_samples = gr.Textbox(label
|
379 |
-
info
|
380 |
-
value
|
381 |
βββ
|
382 |
"A majestic orchestra plays enchanting melodies, filling the air with harmony."
|
383 |
βββ
|
@@ -393,54 +390,88 @@ with gr.Blocks(css=css) as demo:
|
|
393 |
βββ
|
394 |
"As evening falls, a soft hush blankets the world, crickets chirping in a soothing rhythm."
|
395 |
""",
|
396 |
-
interactive
|
397 |
-
lines
|
398 |
-
|
399 |
micro_in = gr.Audio(
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
clean_micro = gr.Checkbox(
|
|
|
406 |
micro_submit_btn = gr.Button("Submit")
|
407 |
-
|
408 |
-
audio_in.upload(fn=load_hidden, inputs=[audio_in], outputs=[hidden_audio_numpy], queue=False)
|
409 |
-
micro_in.stop_recording(fn=load_hidden_mic, inputs=[micro_in], outputs=[hidden_audio_numpy], queue=False)
|
410 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
with gr.Column():
|
413 |
-
|
414 |
cloned_out = gr.Audio(
|
415 |
label="Text to speech output",
|
416 |
-
visible
|
417 |
)
|
418 |
-
|
419 |
video_out = gr.Video(
|
420 |
-
label
|
421 |
-
elem_id
|
422 |
)
|
423 |
-
|
424 |
npz_file = gr.File(
|
425 |
-
label
|
426 |
-
visible
|
427 |
)
|
428 |
|
429 |
folder_path = gr.Textbox(visible=False)
|
430 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
|
432 |
-
|
433 |
audio_in.change(fn=wipe_npz_file, inputs=[folder_path], queue=False)
|
434 |
micro_in.clear(fn=wipe_npz_file, inputs=[folder_path], queue=False)
|
435 |
submit_btn.click(
|
436 |
-
fn
|
437 |
-
inputs
|
438 |
prompt,
|
439 |
audio_in,
|
|
|
440 |
hidden_audio_numpy
|
441 |
],
|
442 |
-
outputs
|
443 |
-
cloned_out,
|
444 |
video_out,
|
445 |
npz_file,
|
446 |
folder_path
|
@@ -448,19 +479,32 @@ with gr.Blocks(css=css) as demo:
|
|
448 |
)
|
449 |
|
450 |
micro_submit_btn.click(
|
451 |
-
fn
|
452 |
-
inputs
|
453 |
prompt,
|
454 |
micro_in,
|
455 |
clean_micro,
|
456 |
hidden_audio_numpy
|
457 |
],
|
458 |
-
outputs
|
459 |
-
cloned_out,
|
460 |
video_out,
|
461 |
npz_file,
|
462 |
folder_path
|
463 |
]
|
464 |
)
|
465 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
demo.queue(api_open=False, max_size=10).launch()
|
|
|
1 |
+
from TTS.api import TTS
|
2 |
+
import json
|
3 |
import gradio as gr
|
4 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
5 |
+
import os
|
6 |
import shutil
|
7 |
import re
|
8 |
|
9 |
+
# from huggingface_hub import snapshot_download
|
10 |
import numpy as np
|
11 |
from scipy.io import wavfile
|
12 |
from scipy.io.wavfile import write, read
|
13 |
from pydub import AudioSegment
|
14 |
+
from gradio import Dropdown
|
15 |
file_upload_available = os.environ.get("ALLOW_FILE_UPLOAD")
|
16 |
MAX_NUMBER_SENTENCES = 10
|
17 |
|
|
|
18 |
with open("characters.json", "r") as file:
|
19 |
data = json.load(file)
|
20 |
characters = [
|
|
|
25 |
}
|
26 |
for item in data
|
27 |
]
|
28 |
+
|
|
|
29 |
tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True)
|
30 |
|
31 |
+
|
32 |
def cut_wav(input_path, max_duration):
|
33 |
# Load the WAV file
|
34 |
audio = AudioSegment.from_wav(input_path)
|
35 |
+
|
36 |
# Calculate the duration of the audio
|
37 |
audio_duration = len(audio) / 1000 # Convert milliseconds to seconds
|
38 |
+
|
39 |
# Determine the duration to cut (maximum of max_duration and actual audio duration)
|
40 |
cut_duration = min(max_duration, audio_duration)
|
41 |
+
|
42 |
# Cut the audio
|
43 |
+
# Convert seconds to milliseconds
|
44 |
+
cut_audio = audio[:int(cut_duration * 1000)]
|
45 |
+
|
46 |
# Get the input file name without extension
|
47 |
file_name = os.path.splitext(os.path.basename(input_path))[0]
|
48 |
+
|
49 |
# Construct the output file path with the original file name and "_cut" suffix
|
50 |
output_path = f"{file_name}_cut.wav"
|
51 |
+
|
52 |
# Save the cut audio as a new WAV file
|
53 |
cut_audio.export(output_path, format="wav")
|
54 |
|
55 |
return output_path
|
56 |
|
57 |
+
|
58 |
def load_hidden(audio_in):
|
59 |
return audio_in
|
60 |
|
61 |
+
|
62 |
def load_hidden_mic(audio_in):
|
63 |
print("USER RECORDED A NEW SAMPLE")
|
64 |
+
|
65 |
+
library_path = 'bark_voices'
|
66 |
+
folder_name = 'audio-0-100'
|
67 |
+
second_folder_name = 'audio-0-100_cleaned'
|
68 |
+
|
69 |
folder_path = os.path.join(library_path, folder_name)
|
70 |
second_folder_path = os.path.join(library_path, second_folder_name)
|
71 |
|
|
|
73 |
if os.path.exists(folder_path):
|
74 |
try:
|
75 |
shutil.rmtree(folder_path)
|
76 |
+
print(
|
77 |
+
f"Successfully deleted the folder previously created from last raw recorded sample: {folder_path}")
|
78 |
except OSError as e:
|
79 |
print(f"Error: {folder_path} - {e.strerror}")
|
80 |
else:
|
81 |
+
print(
|
82 |
+
f"OK, the folder for a raw recorded sample does not exist: {folder_path}")
|
83 |
|
84 |
if os.path.exists(second_folder_path):
|
85 |
try:
|
86 |
shutil.rmtree(second_folder_path)
|
87 |
+
print(
|
88 |
+
f"Successfully deleted the folder previously created from last cleaned recorded sample: {second_folder_path}")
|
89 |
except OSError as e:
|
90 |
print(f"Error: {second_folder_path} - {e.strerror}")
|
91 |
else:
|
92 |
+
print(
|
93 |
+
f"Ok, the folder for a cleaned recorded sample does not exist: {second_folder_path}")
|
94 |
+
|
95 |
return audio_in
|
96 |
|
97 |
+
|
98 |
def clear_clean_ckeck():
|
99 |
return False
|
100 |
|
101 |
+
|
102 |
def wipe_npz_file(folder_path):
|
103 |
print("YO β’ a user is manipulating audio inputs")
|
104 |
+
|
105 |
+
|
106 |
def split_process(audio, chosen_out_track):
|
107 |
gr.Info("Cleaning your audio sample...")
|
108 |
os.makedirs("out", exist_ok=True)
|
109 |
write('test.wav', audio[0], audio[1])
|
110 |
os.system("python3 -m demucs.separate -n mdx_extra_q -j 4 test.wav -o out")
|
111 |
+
# return "./out/mdx_extra_q/test/vocals.wav","./out/mdx_extra_q/test/bass.wav","./out/mdx_extra_q/test/drums.wav","./out/mdx_extra_q/test/other.wav"
|
112 |
if chosen_out_track == "vocals":
|
113 |
print("Audio sample cleaned")
|
114 |
return "./out/mdx_extra_q/test/vocals.wav"
|
|
|
120 |
return "./out/mdx_extra_q/test/other.wav"
|
121 |
elif chosen_out_track == "all-in":
|
122 |
return "test.wav"
|
123 |
+
|
124 |
+
|
125 |
def update_selection(selected_state: gr.SelectData):
|
126 |
c_image = characters[selected_state.index]["image"]
|
127 |
c_title = characters[selected_state.index]["title"]
|
|
|
129 |
|
130 |
return c_title, selected_state
|
131 |
|
132 |
+
|
133 |
def infer(prompt, input_wav_file, clean_audio, hidden_numpy_audio):
|
134 |
print("""
|
135 |
βββββ
|
|
|
138 |
""")
|
139 |
if prompt == "":
|
140 |
gr.Warning("Do not forget to provide a tts prompt !")
|
141 |
+
|
142 |
+
if clean_audio is True:
|
143 |
print("We want to clean audio sample")
|
144 |
# Extract the file name without the extension
|
145 |
new_name = os.path.splitext(os.path.basename(input_wav_file))[0]
|
|
|
151 |
else:
|
152 |
print("This file is new, we need to clean and store it")
|
153 |
source_path = split_process(hidden_numpy_audio, "vocals")
|
154 |
+
|
155 |
# Rename the file
|
156 |
+
new_path = os.path.join(os.path.dirname(
|
157 |
+
source_path), f"{new_name}_cleaned.wav")
|
158 |
os.rename(source_path, new_path)
|
159 |
source_path = new_path
|
160 |
+
else:
|
161 |
print("We do NOT want to clean audio sample")
|
162 |
# Path to your WAV file
|
163 |
source_path = input_wav_file
|
|
|
175 |
os.makedirs(destination_path, exist_ok=True)
|
176 |
|
177 |
# Move the WAV file to the new directory
|
178 |
+
shutil.move(source_path, os.path.join(
|
179 |
+
destination_path, f"{file_name}.wav"))
|
180 |
|
181 |
# βββββ
|
182 |
+
|
183 |
# Split the text into sentences based on common punctuation marks
|
184 |
sentences = re.split(r'(?<=[.!?])\s+', prompt)
|
185 |
|
|
|
187 |
gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)")
|
188 |
# Keep only the first MAX_NUMBER_SENTENCES sentences
|
189 |
first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
|
190 |
+
|
191 |
# Join the selected sentences back into a single string
|
192 |
limited_prompt = ' '.join(first_nb_sentences)
|
193 |
prompt = limited_prompt
|
|
|
197 |
|
198 |
gr.Info("Generating audio from prompt")
|
199 |
tts.tts_to_file(text=prompt,
|
200 |
+
file_path="output.wav",
|
201 |
+
voice_dir="bark_voices/",
|
202 |
+
speaker=f"{file_name}")
|
203 |
|
204 |
# List all the files and subdirectories in the given directory
|
205 |
contents = os.listdir(f"bark_voices/{file_name}")
|
206 |
|
207 |
# Print the contents
|
208 |
for item in contents:
|
209 |
+
print(item)
|
210 |
print("Preparing final waveform video ...")
|
211 |
tts_video = gr.make_waveform(audio="output.wav")
|
212 |
print(tts_video)
|
213 |
print("FINISHED")
|
214 |
return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True), gr.Group.update(visible=True), destination_path
|
215 |
|
216 |
+
|
217 |
def infer_from_c(prompt, c_name):
|
218 |
print("""
|
219 |
βββββ
|
|
|
223 |
if prompt == "":
|
224 |
gr.Warning("Do not forget to provide a tts prompt !")
|
225 |
print("Warning about prompt sent to user")
|
226 |
+
|
227 |
print(f"USING VOICE LIBRARY: {c_name}")
|
228 |
# Split the text into sentences based on common punctuation marks
|
229 |
sentences = re.split(r'(?<=[.!?])\s+', prompt)
|
230 |
+
|
231 |
if len(sentences) > MAX_NUMBER_SENTENCES:
|
232 |
+
gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)")
|
233 |
# Keep only the first MAX_NUMBER_SENTENCES sentences
|
234 |
first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
|
235 |
+
|
236 |
# Join the selected sentences back into a single string
|
237 |
limited_prompt = ' '.join(first_nb_sentences)
|
238 |
prompt = limited_prompt
|
|
|
240 |
else:
|
241 |
prompt = prompt
|
242 |
|
|
|
243 |
if c_name == "":
|
244 |
gr.Warning("Voice character is not properly selected. Please ensure that the name of the chosen voice is specified in the Character Name input.")
|
245 |
print("Warning about Voice Name sent to user")
|
246 |
else:
|
247 |
print(f"Generating audio from prompt with {c_name} ;)")
|
248 |
+
|
249 |
tts.tts_to_file(text=prompt,
|
250 |
+
file_path="output.wav",
|
251 |
+
voice_dir="examples/library/",
|
252 |
+
speaker=f"{c_name}")
|
253 |
+
|
254 |
print("Preparing final waveform video ...")
|
255 |
tts_video = gr.make_waveform(audio="output.wav")
|
256 |
print(tts_video)
|
|
|
299 |
max-width: 15rem;
|
300 |
height: 36px;
|
301 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
img[src*='#center'] {
|
303 |
display: block;
|
304 |
margin: auto;
|
|
|
322 |
.dark .footer>p {
|
323 |
background: #0b0f19;
|
324 |
}
|
325 |
+
|
326 |
.disclaimer {
|
327 |
text-align: left;
|
328 |
}
|
|
|
333 |
|
334 |
with gr.Blocks(css=css) as demo:
|
335 |
with gr.Column(elem_id="col-container"):
|
|
|
|
|
|
|
|
|
336 |
with gr.Row():
|
337 |
with gr.Column():
|
338 |
+
prompt_choices = [
|
339 |
+
"Hey mom, I have a flat tire and need a e transfer, send it to bob@gmail.com please",
|
340 |
+
"Hey, it's me. I lost my phone and need some cash for a cab. Can you send it to my friend's PayPal account?",
|
341 |
+
"I'm locked out of my email account. Can you share your login details with me so I can check my messages?",
|
342 |
+
]
|
343 |
+
|
344 |
+
# Create a Dropdown with the hardcoded prompts
|
345 |
+
prompt = Dropdown(
|
346 |
+
label="Text to speech prompt",
|
347 |
+
choices=prompt_choices,
|
348 |
+
elem_id="tts-prompt"
|
349 |
)
|
350 |
|
351 |
+
with gr.Tab("File upload"):
|
352 |
+
|
353 |
+
with gr.Column():
|
354 |
+
|
355 |
+
if file_upload_available == "True":
|
356 |
+
audio_in = gr.Audio(
|
357 |
+
label="WAV voice to clone",
|
358 |
+
type="filepath",
|
359 |
+
source="upload"
|
360 |
+
)
|
361 |
+
else:
|
362 |
+
audio_in = gr.Audio(
|
363 |
+
label="WAV voice to clone",
|
364 |
+
type="filepath",
|
365 |
+
source="upload",
|
366 |
+
interactive=False
|
367 |
+
)
|
368 |
+
clean_sample = gr.Checkbox(
|
369 |
+
label="Clean sample ?", value=False)
|
370 |
+
hidden_audio_numpy = gr.Audio(
|
371 |
+
type="numpy", visible=False)
|
372 |
+
submit_btn = gr.Button("Submit")
|
373 |
+
|
374 |
with gr.Tab("Microphone"):
|
375 |
+
texts_samples = gr.Textbox(label="Helpers",
|
376 |
+
info="You can read out loud one of these sentences if you do not know what to record :)",
|
377 |
+
value=""""Jazz, a quirky mix of groovy saxophones and wailing trumpets, echoes through the vibrant city streets."
|
378 |
βββ
|
379 |
"A majestic orchestra plays enchanting melodies, filling the air with harmony."
|
380 |
βββ
|
|
|
390 |
βββ
|
391 |
"As evening falls, a soft hush blankets the world, crickets chirping in a soothing rhythm."
|
392 |
""",
|
393 |
+
interactive=False,
|
394 |
+
lines=5
|
395 |
+
)
|
396 |
micro_in = gr.Audio(
|
397 |
+
label="Record voice to clone",
|
398 |
+
type="filepath",
|
399 |
+
source="microphone",
|
400 |
+
interactive=True
|
401 |
+
)
|
402 |
+
clean_micro = gr.Checkbox(
|
403 |
+
label="Clean sample ?", value=False)
|
404 |
micro_submit_btn = gr.Button("Submit")
|
|
|
|
|
|
|
405 |
|
406 |
+
audio_in.upload(fn=load_hidden, inputs=[audio_in], outputs=[
|
407 |
+
hidden_audio_numpy], queue=False)
|
408 |
+
micro_in.stop_recording(fn=load_hidden_mic, inputs=[micro_in], outputs=[
|
409 |
+
hidden_audio_numpy], queue=False)
|
410 |
+
|
411 |
+
with gr.Tab("Voices Characters"):
|
412 |
+
selected_state = gr.State()
|
413 |
+
gallery_in = gr.Gallery(
|
414 |
+
label="Character Gallery",
|
415 |
+
value=[(item["image"], item["title"])
|
416 |
+
for item in characters],
|
417 |
+
interactive=True,
|
418 |
+
allow_preview=False,
|
419 |
+
columns=3,
|
420 |
+
elem_id="gallery",
|
421 |
+
show_share_button=False
|
422 |
+
)
|
423 |
+
c_submit_btn = gr.Button("Submit")
|
424 |
|
425 |
with gr.Column():
|
426 |
+
|
427 |
cloned_out = gr.Audio(
|
428 |
label="Text to speech output",
|
429 |
+
visible=False
|
430 |
)
|
431 |
+
|
432 |
video_out = gr.Video(
|
433 |
+
label="Waveform video",
|
434 |
+
elem_id="voice-video-out"
|
435 |
)
|
436 |
+
|
437 |
npz_file = gr.File(
|
438 |
+
label=".npz file",
|
439 |
+
visible=False
|
440 |
)
|
441 |
|
442 |
folder_path = gr.Textbox(visible=False)
|
443 |
|
444 |
+
character_name = gr.Textbox(
|
445 |
+
label="Character Name",
|
446 |
+
placeholder="Name that voice character",
|
447 |
+
elem_id="character-name"
|
448 |
+
)
|
449 |
+
|
450 |
+
voice_description = gr.Textbox(
|
451 |
+
label="description",
|
452 |
+
placeholder="How would you describe that voice ? ",
|
453 |
+
elem_id="voice-description"
|
454 |
+
)
|
455 |
+
|
456 |
+
gallery_in.select(
|
457 |
+
update_selection,
|
458 |
+
outputs=[character_name, selected_state],
|
459 |
+
queue=False,
|
460 |
+
show_progress=False,
|
461 |
+
)
|
462 |
|
|
|
463 |
audio_in.change(fn=wipe_npz_file, inputs=[folder_path], queue=False)
|
464 |
micro_in.clear(fn=wipe_npz_file, inputs=[folder_path], queue=False)
|
465 |
submit_btn.click(
|
466 |
+
fn=infer,
|
467 |
+
inputs=[
|
468 |
prompt,
|
469 |
audio_in,
|
470 |
+
clean_sample,
|
471 |
hidden_audio_numpy
|
472 |
],
|
473 |
+
outputs=[
|
474 |
+
cloned_out,
|
475 |
video_out,
|
476 |
npz_file,
|
477 |
folder_path
|
|
|
479 |
)
|
480 |
|
481 |
micro_submit_btn.click(
|
482 |
+
fn=infer,
|
483 |
+
inputs=[
|
484 |
prompt,
|
485 |
micro_in,
|
486 |
clean_micro,
|
487 |
hidden_audio_numpy
|
488 |
],
|
489 |
+
outputs=[
|
490 |
+
cloned_out,
|
491 |
video_out,
|
492 |
npz_file,
|
493 |
folder_path
|
494 |
]
|
495 |
)
|
496 |
|
497 |
+
c_submit_btn.click(
|
498 |
+
fn=infer_from_c,
|
499 |
+
inputs=[
|
500 |
+
prompt,
|
501 |
+
character_name
|
502 |
+
],
|
503 |
+
outputs=[
|
504 |
+
cloned_out,
|
505 |
+
video_out,
|
506 |
+
npz_file,
|
507 |
+
]
|
508 |
+
)
|
509 |
+
|
510 |
demo.queue(api_open=False, max_size=10).launch()
|