Spaces:
Paused
Paused
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from torch.utils.data import DistributedSampler, RandomSampler | |
from transformers import PreTrainedModel, Trainer, logging | |
from transformers.integrations import is_fairscale_available | |
from transformers.models.fsmt.configuration_fsmt import FSMTConfig | |
from transformers.optimization import ( | |
Adafactor, | |
AdamW, | |
get_constant_schedule, | |
get_constant_schedule_with_warmup, | |
get_cosine_schedule_with_warmup, | |
get_cosine_with_hard_restarts_schedule_with_warmup, | |
get_linear_schedule_with_warmup, | |
get_polynomial_decay_schedule_with_warmup, | |
) | |
from transformers.trainer_pt_utils import get_tpu_sampler | |
from transformers.training_args import ParallelMode | |
from transformers.utils import is_torch_tpu_available | |
if is_fairscale_available(): | |
from fairscale.optim import OSS | |
logger = logging.get_logger(__name__) | |
arg_to_scheduler = { | |
"linear": get_linear_schedule_with_warmup, | |
"cosine": get_cosine_schedule_with_warmup, | |
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, | |
"polynomial": get_polynomial_decay_schedule_with_warmup, | |
"constant": get_constant_schedule, | |
"constant_w_warmup": get_constant_schedule_with_warmup, | |
} | |
class Seq2SeqTrainer(Trainer): | |
def __init__(self, config=None, data_args=None, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
if config is None: | |
assert isinstance(self.model, PreTrainedModel), ( | |
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" | |
f" {self.model.__class__}" | |
) | |
self.config = self.model.config | |
else: | |
self.config = config | |
self.data_args = data_args | |
self.vocab_size = self.config.tgt_vocab_size if isinstance(self.config, FSMTConfig) else self.config.vocab_size | |
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): | |
assert self.config.pad_token_id is not None, ( | |
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" | |
" calculation or doing label smoothing." | |
) | |
if self.config.pad_token_id is None and self.config.eos_token_id is not None: | |
logger.warning( | |
f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" | |
" padding.." | |
) | |
if self.args.label_smoothing == 0: | |
self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id) | |
else: | |
# dynamically import label_smoothed_nll_loss | |
from utils import label_smoothed_nll_loss | |
self.loss_fn = label_smoothed_nll_loss | |
def create_optimizer_and_scheduler(self, num_training_steps: int): | |
""" | |
Setup the optimizer and the learning rate scheduler. | |
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the | |
Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass. | |
""" | |
if self.optimizer is None: | |
no_decay = ["bias", "LayerNorm.weight"] | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], | |
"weight_decay": self.args.weight_decay, | |
}, | |
{ | |
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], | |
"weight_decay": 0.0, | |
}, | |
] | |
optimizer_cls = Adafactor if self.args.adafactor else AdamW | |
if self.args.adafactor: | |
optimizer_cls = Adafactor | |
optimizer_kwargs = {"scale_parameter": False, "relative_step": False} | |
else: | |
optimizer_cls = AdamW | |
optimizer_kwargs = { | |
"betas": (self.args.adam_beta1, self.args.adam_beta2), | |
"eps": self.args.adam_epsilon, | |
} | |
optimizer_kwargs["lr"] = self.args.learning_rate | |
if self.sharded_ddp: | |
self.optimizer = OSS( | |
params=optimizer_grouped_parameters, | |
optim=optimizer_cls, | |
**optimizer_kwargs, | |
) | |
else: | |
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) | |
if self.lr_scheduler is None: | |
self.lr_scheduler = self._get_lr_scheduler(num_training_steps) | |
else: # ignoring --lr_scheduler | |
logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.") | |
def _get_lr_scheduler(self, num_training_steps): | |
schedule_func = arg_to_scheduler[self.args.lr_scheduler] | |
if self.args.lr_scheduler == "constant": | |
scheduler = schedule_func(self.optimizer) | |
elif self.args.lr_scheduler == "constant_w_warmup": | |
scheduler = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps) | |
else: | |
scheduler = schedule_func( | |
self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps | |
) | |
return scheduler | |
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: | |
if isinstance(self.train_dataset, torch.utils.data.IterableDataset): | |
return None | |
elif is_torch_tpu_available(): | |
return get_tpu_sampler(self.train_dataset) | |
else: | |
if self.args.sortish_sampler: | |
self.train_dataset.make_sortish_sampler( | |
self.args.per_device_train_batch_size, | |
distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), | |
) | |
return ( | |
RandomSampler(self.train_dataset) | |
if self.args.local_rank == -1 | |
else DistributedSampler(self.train_dataset) | |
) | |
def _compute_loss(self, model, inputs, labels): | |
if self.args.label_smoothing == 0: | |
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: | |
# force training to ignore pad token | |
logits = model(**inputs, use_cache=False)[0] | |
loss = self.loss_fn(logits.view(-1, logits.shape[-1]), labels.view(-1)) | |
else: | |
# compute usual loss via models | |
loss, logits = model(**inputs, labels=labels, use_cache=False)[:2] | |
else: | |
# compute label smoothed loss | |
logits = model(**inputs, use_cache=False)[0] | |
lprobs = torch.nn.functional.log_softmax(logits, dim=-1) | |
loss, _ = self.loss_fn(lprobs, labels, self.args.label_smoothing, ignore_index=self.config.pad_token_id) | |
return loss, logits | |
def compute_loss(self, model, inputs): | |
labels = inputs.pop("labels") | |
loss, _ = self._compute_loss(model, inputs, labels) | |
return loss | |
def prediction_step( | |
self, | |
model: nn.Module, | |
inputs: Dict[str, Union[torch.Tensor, Any]], | |
prediction_loss_only: bool, | |
ignore_keys: Optional[List[str]] = None, | |
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: | |
""" | |
Perform an evaluation step on :obj:`model` using obj:`inputs`. | |
Subclass and override to inject custom behavior. | |
Args: | |
model (:obj:`nn.Module`): | |
The model to evaluate. | |
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): | |
The inputs and targets of the model. | |
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the | |
argument :obj:`labels`. Check your model's documentation for all accepted arguments. | |
prediction_loss_only (:obj:`bool`): | |
Whether or not to return the loss only. | |
Return: | |
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: | |
A tuple with the loss, logits and labels (each being optional). | |
""" | |
inputs = self._prepare_inputs(inputs) | |
gen_kwargs = { | |
"max_length": self.data_args.val_max_target_length | |
if self.data_args is not None | |
else self.config.max_length, | |
"num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, | |
} | |
if self.args.predict_with_generate and not self.args.prediction_loss_only: | |
generated_tokens = self.model.generate( | |
inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
**gen_kwargs, | |
) | |
# in case the batch is shorter than max length, the output should be padded | |
if generated_tokens.shape[-1] < gen_kwargs["max_length"]: | |
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"]) | |
labels = inputs.pop("labels") | |
with torch.no_grad(): | |
# compute loss on predict data | |
loss, logits = self._compute_loss(model, inputs, labels) | |
loss = loss.mean().detach() | |
if self.args.prediction_loss_only: | |
return (loss, None, None) | |
logits = generated_tokens if self.args.predict_with_generate else logits | |
if labels.shape[-1] < gen_kwargs["max_length"]: | |
labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"]) | |
return (loss, logits, labels) | |
def _pad_tensors_to_max_len(self, tensor, max_length): | |
# If PAD token is not defined at least EOS token has to be defined | |
pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id | |
if pad_token_id is None: | |
raise ValueError( | |
"Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" | |
f" padded to `max_length`={max_length}" | |
) | |
padded_tensor = pad_token_id * torch.ones( | |
(tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device | |
) | |
padded_tensor[:, : tensor.shape[-1]] = tensor | |
return padded_tensor | |